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Abstract—Motivated by recent revelations of widespread state
surveillance of personal communication, many solutions now
claim to offer secure and private messaging. This includes both a
large number of new projects and many widely adopted tools that
have added security features. The intense pressure in the past two
years to deliver solutions quickly has resulted in varying threat
models, incomplete objectives, dubious security claims, and a lack
of broad perspective on the existing cryptographic literature on
secure communication.

In this paper, we evaluate and systematize current secure
messaging solutions and propose an evaluation framework for
their security, usability, and ease-of-adoption properties. We con-
sider solutions from academia, but also identify innovative and
promising approaches used “in-the-wild” that are not considered
by the academic literature. We identify three key challenges
and map the design landscape for each: trust establishment,
conversation security, and transport privacy. Trust establishment
approaches offering strong security and privacy features perform
poorly from a usability and adoption perspective, whereas some
hybrid approaches that have not been well studied in the
academic literature might provide better trade-offs in practice.
In contrast, once trust is established, conversation security can
be achieved without any user involvement in most two-party
conversations, though conversations between larger groups still
lack a good solution. Finally, transport privacy appears to be
the most difficult problem to solve without paying significant
performance penalties.

I. INTRODUCTION

Most popular messaging tools used on the Internet do
not offer end-to-end security. Even though protocols such
as OpenPGP and S/MIME have been available for decades,
they have failed to achieve widespread adoption and have
been plagued by usability issues [2]–[5]. However, recent
revelations about mass surveillance by intelligence services
have highlighted the lack of security and privacy in messaging
tools and spurred demand for better solutions. A recent Pew
Research poll found that 80% of Americans are now concerned
about government monitoring of their electronic communica-
tions. 68% of respondents reported feeling “not very secure”
or “not at all secure” when using online chat and 57% felt
similarly insecure using email [6]. Consequently, many new
applications claiming to offer secure communication are being
developed and adopted by end users.

Despite the publication of a large number of secure mes-
saging protocols in the academic literature, tools are being
released with new designs that fail to draw upon this knowl-
edge, repeat known design mistakes, or use cryptography in
insecure ways. However, as will become clear over the course

1An extended version of this paper is available [1].

of this paper, the academic research community is also failing
to learn some lessons from tools in the wild.

Furthermore, there is a lack of coherent vision for the future
of secure messaging. Most solutions focus on specific issues
and have different goals and threat models. This is com-
pounded by differing security vocabularies and the absence of
a unified evaluation of prior work. Outside of academia, many
products mislead users by advertising with grandiose claims
of “military grade encryption” or by promising impossible
features such as self-destructing messages [7]–[10]. The recent
EFF Secure Messaging Scorecard evaluated tools for basic
indicators of security and project health [11] and found many
purportedly “secure” tools do not even attempt end-to-end
encryption.

We are motivated to systematize knowledge on secure
messaging due to the lack of a clear winner in the race for
widespread deployment and the persistence of many lingering
unsolved research problems. Our primary goal is to iden-
tify where problems lie and create a guide for the research
community to help move forward on this important topic. A
further goal in this work is to establish evaluation criteria for
measuring security features of messaging systems, as well as
their usability and adoption implications. We aim to provide
a broad perspective on secure messaging and its challenges,
as well as a comparative evaluation of existing approaches,
in order to provide context that informs future efforts. Our
primary contributions are: (1) establishing a set of common
security and privacy feature definitions for secure messaging;
(2) systematization of secure messaging approaches based both
on academic work and “in-the-wild” projects; (3) comparative
evaluation of these approaches; and (4) identification and
discussion of current research challenges, indicating future
research directions.

We present our systematization methodology in Section II.
In subsequent sections (Sections III–V), we evaluate each of
the proposed problem areas (namely trust establishment, con-
versation security and transport privacy) in secure messaging.
Our findings are discussed and concluded in Section VI.

II. SYSTEMATIZATION METHODOLOGY

Over the years, hundreds of secure messaging systems have
been proposed and developed in both academia and industry.
An exhaustive analysis of all solutions is both infeasible and
undesirable. Instead, we extract recurring secure messaging
techniques from the literature and publicly available messaging
tools, focusing on systematization and evaluation of the under-
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lying concepts and the desirable secure messaging properties.
In this section, we explain our precise methodology.

A. Problem Areas

While most secure messaging solutions try to deal with all
possible security aspects, in our systematization, we divide
secure messaging into three nearly orthogonal problem areas
addressed in dedicated sections: the trust establishment prob-
lem (Section III), ensuring the distribution of cryptographic
long-term keys and proof of association with the owning en-
tity; the conversation security problem (Section IV), ensuring
the protection of exchanged messages during conversations;
and the transport privacy problem (Section V), hiding the
communication metadata.

While any concrete tool must decide on an approach for
each problem area, abstractly defined protocols may only
address some of them. Additionally, the distinction between
these three problem areas is sometimes blurred since tech-
niques used by secure messaging systems may be part of their
approach for multiple problem areas.

B. Threat Model

When evaluating the security and privacy properties in
secure messaging, we must consider a variety of adversaries.
Our threat model includes the following attackers:

Local Adversary (active/passive): An attacker controlling
local networks (e.g., owners of open wireless access points).

Global Adversary (active/passive): An attacker controlling
large segments of the Internet, such as powerful nation states
or large internet service providers.

Service providers: For messaging systems that require cen-
tralized infrastructure (e.g., public-key directories), the service
operators should be considered as potential adversaries.

Note that our adversary classes are not necessarily exclusive.
In some cases, adversaries of different types might collude.
We also assume that all adversaries are participants in the
messaging system, allowing them to start conversations, send
messages, or perform other normal participant actions. We
assume that the endpoints in a secure messaging system are
secure (i.e., malware and hardware attacks are out of scope).

C. Systematization Structure

Sections III–V evaluate trust establishment, conversation
security, and transport privacy approaches, respectively. For
each problem area, we identify desirable properties divided
into three main groups: security and privacy features, usability
features, and adoption considerations. Each section starts
by defining these properties, followed by the extraction of
generic approaches used to address the problem area from
existing secure messaging systems. Each section then defines
and evaluates these approaches, as well as several possible
variations, in terms of the already-defined properties. Concrete
examples of protocols or tools making use of each approach
are given whenever possible. The sections then conclude by
discussing the implications of these evaluations.

In each section, we include a table (Tables I, II, and III)
visualizing our evaluation of approaches within that problem
area. Columns in the tables represent the identified proper-
ties, while rows represent the approaches. Groups of rows
begin with a generic concept, specified as a combination
of cryptographic protocols, followed by extension rows that
add or modify components of the base concept. Whenever
possible, rows include the name of a representative protocol
or tool that uses the combination of concepts. Representatives
may not achieve all of the features that are possible using
the approach; they are merely included to indicate where
approaches are used in practice. Each row is rated as providing
or not providing the desired properties. In some cases, a row
might only partially provide a property, which is explained
in the associated description. Due to space limitations, the
discussion of some schemes listed in the tables has been
omitted. Details of these and their evaluations are included
in the extended version of this paper [1].

For each problem area, we identify desirable properties in
three main categories:

1) Security and Privacy Properties: Most secure messaging
systems are designed using standard cryptographic primitives
such as hash functions, symmetric encryption ciphers, and
digital signature schemes. When evaluating the security and
privacy features of a scheme, we assume cryptographic prim-
itives are securely chosen and correctly implemented. We
do not attempt to audit for software exploits which may
compromise users’ security. However, if systems allow end
users to misuse these cryptographic primitives, the scheme is
penalized.

2) Usability Properties: Usability is crucial for the use and
adoption of secure messaging services. Human end users need
to understand how to use the system securely and the effort
required to do so must be acceptable for the perceived benefits.

In previous research, various secure messaging tools have
been evaluated and weaknesses in the HCI portion of their
design have been revealed. The seminal paper “Why Johnny
Can’t Encrypt” [2] along with follow-up studies evaluating
PGP tools [3], [4] and other messaging protocols [12]–[16]
have also showed users encountering sever problems using
encryption securely. However, these studies focused on UI
issues unique to specific implementations. Because we focus
on usability consequences imposed by generic concepts, our
results hold for any tool that implements these concepts.

To evaluate the usability of secure messaging approaches,
we examine the additional user effort (and decisions), security-
related errors, and reduction in reliability and flexibility that
they introduce. Our usability metrics compare this extra effort
to a baseline approach with minimal security or privacy
features. This is a challenging task and conventional user
studies are not well suited to extract such high-level usability
comparisons between disparate tools. We employed expert
reviews in the form of cognitive walkthroughs of actual imple-
mentations to extract and systematize usability aspects based
on Nielsen’s usability principles [17]–[19], which is consistent
with previous systematization efforts for security schemes in

233233

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11,2022 at 09:36:50 UTC from IEEE Xplore.  Restrictions apply. 



other areas [20], [21]. These usability results supplement
our technical systematization and highlight potential trade-offs
between security and usability.

3) Ease of Adoption: Adoption of secure messaging
schemes is not only affected by their usability and security
claims, but also by requirements imposed by the underlying
technology. Protocols might introduce adoption issues by
requiring additional resources or infrastructure from end users
or service operators. When evaluating the adoption properties
of an approach, we award a good score if the system does
not exceed the resources or infrastructure requirements of a
baseline approach that lacks any security or privacy features.

III. TRUST ESTABLISHMENT

One of the most challenging aspects of messaging se-
curity is trust establishment, the process of users verifying
that they are actually communicating with the parties they
intend. Long-term key exchange refers to the process where
users send cryptographic key material to each other. Long-
term key authentication (also called key validation and key
verification) is the mechanism allowing users to ensure that
cryptographic long-term keys are associated with the correct
real-world entities. We use trust establishment to refer to the
combination of long-term key exchange and long-term key
authentication in the remainder of this paper. After contact
discovery (the process of locating contact details for friends
using the messaging service), end users first have to perform
trust establishment in order to enable secure communication.

A. Security and Privacy Features

A trust establishment protocol can provide the following
security and privacy features:

Network MitM Prevention: Prevents Man-in-the-Middle
(MitM) attacks by local and global network adversaries.

Operator MitM Prevention: Prevents MitM attacks executed
by infrastructure operators.

Operator MitM Detection: Allows the detection of MitM
attacks performed by operators after they have occurred.

Operator Accountability: It is possible to verify that oper-
ators behaved correctly during trust establishment.

Key Revocation Possible: Users can revoke and renew keys
(e.g., to recover from key loss or compromise).

Privacy Preserving: The approach leaks no conversation
metadata to other participants or even service operators.

B. Usability Properties

Most trust establishment schemes require key management:
user agents must generate, exchange, and verify other partic-
ipants’ keys. For some approaches, users may be confronted
with additional tasks, as well as possible warnings and errors,
compared to classic tools without end-to-end security. If a
concept requires little user effort and introduces no new error
types, we award a mark for the property to denote good usabil-
ity. We only consider the minimum user interaction required
by the protocol instead of rating specific implementations.

Automatic Key Initialization: No additional user effort is
required to create a long-term key pair.

Low Key Maintenance: Key maintenance encompasses re-
curring effort users have to invest into maintaining keys. Some
systems require that users sign other keys or renew expired
keys. Usable systems require no key maintenance tasks.

Easy Key Discovery: When new contacts are added, no
additional effort is needed to retrieve key material.

Easy Key Recovery: When users lose long-term key mate-
rial, it is easy to revoke old keys and initialize new keys (e.g.,
simply reinstalling the app or regenerating keys is sufficient).

In-band: No out-of-band channels are needed that require
users to invest additional effort to establish.

No Shared Secrets: Shared secrets require existing social
relationships. This limits the usability of a system, as not all
communication partners are able to devise shared secrets.

Alert-less Key Renewal: If other participants renew their
long-term keys, a user can proceed without errors or warnings.

Immediate Enrollment: When keys are (re-)initialized, other
participants are able to verify and use them immediately.

Inattentive User Resistant: Users do not need to carefully
inspect information (e.g., key fingerprints) to achieve security.

C. Adoption Properties

Multiple Key Support: Users should not have to invest
additional effort if they or their conversation partners use
multiple public keys, making the use of multiple devices with
separate keys transparent.

No Service Provider Required: Trust establishment does not
require additional infrastructure (e.g., key servers).

No Auditing Required: The approach does not require
auditors to verify correct behavior of infrastructure operators.

No Name Squatting: Users can choose their names and can
be prevented from reserving a large number of popular names.

Asynchronous: Trust establishment can occur asyn-
chronously without all conversation participants online.

Scalable: Trust establishment is efficient, with resource
requirements growing logarithmically (or smaller) with the the
total number of participants in the system.

D. Evaluation

1) Opportunistic Encryption (Baseline): We consider op-
portunistic encryption, in which an encrypted session is es-
tablished without any key verification, as a baseline. For
instance, this could be an OTR encryption session without any
authentication. The main goal of opportunistic encryption is to
counter passive adversaries; active attackers can easily execute
MitM attacks. From a usability perspective, this approach is
the baseline since it neither places any burden on the user nor
generates any new error or warning messages.

2) TOFU: Trust-On-First-Use (TOFU) extends opportunis-
tic encryption by remembering previously seen key mate-
rial [22]. The network MitM prevented and infrastructure
MitM prevented properties are only partially provided due to
the requirement that no attacker is present during the initial
connection. TOFU requires no service provider since keys can
be exchanged by the conversation participants directly. TOFU
does not define a mechanism for key revocation. TOFU can be
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TABLE I
TRADE-OFFS FOR COMBINATIONS OF TRUST ESTABLISHMENT APPROACHES. SECURE APPROACHES OFTEN SACRIFICE USABILITY AND ADOPTION.
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Opportunistic Encryption†* TCPCrypt - - - - -
+TOFU (Strict)† - - - - -
+TOFU†* TextSecure - - - -
Key Fingerprint Verification†* Threema - - - - - - - - -
+Short Auth Strings (Out-of-Band)†* SilentText - - - - - - - - - - -
+Short Auth Strings (In-Band/Voice/Video)†* ZRTP - - - - - - - - -
+Socialist Millionaire (SMP)†* OTR - - - - - - - - - -
+Mandatory Verification†* SafeSlinger - - - - - - - -
Key Directory†* iMessage - - - - -
+Certificate Authority†* S/MIME - - - -
+Transparency Log - - - - -
+Extended Transparency Log† - - - -
+Self-Auditable Log† CONIKS -
Web-of-Trust†* PGP - - - - - - - -
+Trust Delegation†* GnuNS - - - - - - -
+Tracking* Keybase - - - - - - -
Pure IBC† SIM-IBC-KMS - - - - - - -
+Revocable IBC† - - - - - - -
Blockchains* Namecoin - - - - - -
Key Directory+TOFU+Optional Verification†* TextSecure - - - -
Opportunistic Encryption+SMP†* OTR - - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

implemented in strict and non-strict forms. The strict form fails
when the key changes, providing inattentive user resilience
but preventing easy key recovery. The non-strict form prompts
users to accept key changes, providing easy key recovery at
the expense of inattentive user resilience.

TOFU-based approaches, like the baseline, do not require
any user interaction during the initial contact discovery. This
yields good scores for all user-effort properties except for the
key revocation property, which is not defined, and alert-less
key renewal, since users cannot distinguish benign key changes
from MitM attacks without additional verification methods.

From an adoption perspective, TOFU performs similarly to
the baseline, except for key recovery in the strict version and
multiple key support in both versions. The multiple key support
problem arises from the fact that if multiple keys are used, the
protocol cannot distinguish between devices. An attacker can
claim that a new device, with the attacker’s key, is being used.

3) Key Fingerprint Verification: Manual verification re-
quires users to compare some representation of a cryptographic
hash of their partners’ public keys out-of-band (e.g., in person
or via a separate secure channel).

Assuming the fingerprint check is performed correctly by
end users, manual verification provides all desirable security
properties with the exception of only partial key revocation
support, as this requires contacting each communication part-
ner out-of-band. The approaches differ only in their usability
and adoption features.

Fingerprint verification approaches introduce severe usabil-
ity and adoption limitations: users have to perform manual
verification before communicating with a new partner (and get
them to do the same) to ensure strong authentication. Thus,
manual verification does not offer automatic key initialization,
easy key discovery, or immediate enrollment. In addition,
new keys introduce an alert on key renewal, resulting in a
key maintenance effort. Fingerprints complicate multiple key
support since each device might use a different key.

4) Short Authentication String (SAS): To ease fingerprint
verification, shorter strings can be provided to the users for
comparison. A SAS is a truncated cryptographic hash (e.g.,
20–30 bits long) of all public parts of the key exchange. It
is often represented in a format aimed to be human-friendly,
such as a short sequence of words. All participants compute
the SAS based on the key exchange they observed, and then
compare the resulting value with each other. The method used
for comparison of the SAS must authenticate the entities using
some underlying trust establishment mechanism.

ZRTP, and several earlier products, use the SAS method by
requiring participants to read strings aloud and thus anchors
trust in the ability of participants to recognize each other’s
voices [23], [24]. Users who have never heard each other’s
voices cannot authenticate using this method. Even for users
that are familiar with each other, the security provided by voice
identification has been the subject of controversy [25], [26].
Recent work [27] suggests that, even with a small number of
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samples of a target user’s speaking voice, audio samples can
be synthesized which are indistinguishable from the genuine
user’s voice with typical levels of background noise.

For this reason, we consider voice-based SAS verification
to be obsolescent from a security standpoint. In Table I, we
assume that users verify the SAS with a method providing
stronger security (e.g., using audio and video channels with
careful inspection during the SAS verification). If the com-
munication channel (e.g., text messaging) does not support a
mechanism to establish trust, the SAS must be compared out
of band (e.g., as recommended by SilentText).

The SAS approach sacrifices asynchronicity, since mutual
authentication must be done with all users at the same time.
Due to the short size of the SAS, the naive approach is
vulnerable to a MitM attack by an adversary that attempts
to select key exchange values that produce a hash collision
for the two connections. To mitigate this problem, the attacker
can be limited to a single guess by forcing them to reveal their
chosen keys before observing the keys of the honest parties.
This can be accomplished by requiring that the initiator of
the key exchange release a commitment to their key, and then
open the commitment after the other party reveals theirs.

5) Secret-based Zero-Knowledge Verification: The Socialist
Millionaire Protocol (SMP) is a zero-knowledge proof of
knowledge protocol that determines if secret values held by
two parties are equal without revealing the value itself. This
protocol is used in OTR as the recommended method for user
verification [28], [29]. Alice poses a question based on shared
knowledge to Bob in-band and secretly records her answer.
After Bob answers the question, the two parties perform the
SMP to determine if their answers match, without revealing
any additional information. Users are expected to choose
secure questions with answers based on shared knowledge that
attackers would be unable to know or guess.

Since a MitM must perform an online attack and can
only guess once, even low min-entropy secrets achieve strong
security [29], [30]. However, use of the SMP sacrifices asyn-
chronicity since all participants must be online during the
verification. If the protocol fails, the end users do not know
whether their answers did not match, or if a MitM attacker
exists and has made an incorrect guess.

6) Mandatory Verification: The previously defined veri-
fication methods are prone to inattentive users. Mandatory
verification approaches counter user negligence by requiring
that users enter the correct fingerprint strings instead of merely
confirming that they are correct. Of course, entering the
fingerprints takes user effort. In practice, QR-Codes and NFC
are popular methods to ease this process.

In SafeSlinger the user must choose the correct answer
among three possibilities to proceed [31]. After the protocol
is completed, each device receives a copy of contact infor-
mation shared with other participants with security guarantees
including confidentiality and authenticity.

Mandatory verification inherits the usability properties of
the underlying scheme. Incorporating mandatory verification
sacrifices asynchronicity to ensure inattentive user resistance.

7) Authority-based Trust: In authority-based trust schemes,
public keys must be vouched for by one or more trusted au-
thorities. Two well-known examples are public-key directories
and certificate authority schemes.

From the security point of view, the two schemes only differ
in key revocation and privacy preservation. While key updates
in key directories imply the revocation of old keys, in the
CA approach, certificates signed by the authority are trusted
by default; revocation lists have to be maintained separately.
However, CA-based revocation lists used in web browsers are
known to have issues with effectiveness and practicality [21],
[32], [33]. Since certificates may be exchanged by peers
directly, the CA-based approach can be privacy preserving.

With either system, users are vulnerable to MitM attacks
by the authority, which can vouch for, or be coerced to vouch
for, false keys. This weakness has been highlighted by recent
CA scandals [34], [35]. Both schemes can also be attacked if
the authority does not verify keys before vouching for them.
Authorities in messaging services often rely on insecure SMS
or email verification, enabling potential attacks.

The two approaches both support good usability. Well-
known systems using public-key directories, such as iMessage,
work without any user involvement.

8) Transparency Logs: A major issue with trusted authori-
ties is that they can vouch for fraudulent keys in an attack. The
Certificate Transparency protocol [36] requires that all issued
web certificates are included in a public log.

Certificate Transparency is a specific proposal for logging
PKIX certificates for TLS, but the general idea can be applied
to authority-based trust establishment in secure messaging.
We refer to the general concept as transparency logs for the
remainder of the paper. While there are no known deployments
to date, Google plans to adapt transparency logs for user keys
in End-to-End, its upcoming email encryption tool [37]. In
the absence of a concrete definition, we evaluate transparency
logs based on the certificate transparency protocol.

The main security improvement of the two schemes consists
of operator accountability and the detection of operator MitM
attacks after the fact. The remaining security features are
inherited from authority-based trust systems.

However, these schemes introduce new and unresolved us-
ability and adoption issues. For instance, the logs must be au-
dited to ensure correctness, negating the no auditing required
property. The auditing services require gossip protocols to
synchronize the view between the monitors and prevent attack
bubbles (e.g., where different views are presented to different
geographical regions) [36]. Also, since only identity owners
are in a position to verify the correctness of their long-term
keys, they share responsibility for verifying correct behavior of
the log. Previous research has shown that users often neglect
such security responsibilities [38], so this task should be
performed automatically by client applications. However, if
a client detects a certificate in the log that differs from their
version, it is not clear whether the authorities have performed
an attack, an adversary has successfully impersonated the
subject of the certificate to the authorities, or if the subject
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actually maintains multiple certificates (e.g., due to installing
the app on a second device). Ultimately, end users have to cope
with additional security warnings and errors, and it remains
to be seen whether they can distinguish between benign
and malicious log discrepancies without training. In addition,
transparency logs might hamper immediate enrollment due to
delays in log distribution.

Enhanced Certificate Transparency [39] and CONIKS [40]
both improve on the basic transparency logs concept, but
neither has yet been deployed in practice.

9) Blockchains: The Bitcoin cryptocurrency utilizes a novel
distributed consensus mechanism using pseudonymous “min-
ers” to maintain an append-only log [41]. Voting power is
distributed in proportion to computational resources by using
a probabilistic proof-of-work puzzle. For the currency appli-
cation, this log records every transaction to prevent double-
spending. The success of Bitcoin’s consensus protocol has led
to enthusiasm that similar approaches could maintain global
consensus on other types of data, such as a mapping of human-
readable usernames to keys.

Namecoin, the first fork of Bitcoin, allows users to claim
identifiers, add arbitrary data (e.g., public keys) as records for
those identifiers, and even sell control of their identifiers to
others [42]. Namecoin and similar name-mapping blockchains
are denoted by the blockchain entry in Table I. Unlike most
other schemes, Namecoin is strictly “first-come, first-served”,
with any user able to purchase ownership of any number of
unclaimed names for a small, fixed fee per name. This price
is paid in Namecoins — units of currency that are an inherent
part of the system. A small maintenance fee is required to
maintain control of names, and small fees may be charged by
miners to update data or transfer ownership of names.

From the security perspective, blockchain schemes achieve
similar results to manual verification, except that instead of
exchanging keys, the trust relies on the username only. Once
users have securely exchanged usernames, they can reliably
fetch the correct keys.

However, various shortcomings arise from a usability and
adoption perspective. The primary usability limitation is that
if users ever lose the private key used to register their name
(which is not the same as the communication key bound to
that name), they will permanently lose control over that name
(i.e., key recovery is not possible). Similarly, if the key is
compromised, the name can be permanently and irrevocably
hijacked. Thus, the system requires significant key manage-
ment effort and burdens users with high responsibility. If
users rely on a web-based service to manage private keys for
them, as many do with Bitcoin in practice, the system is no
longer truly end-to-end. The system requires users to pay to
reserve and maintain names, sacrificing low key maintenance
and automatic key initialization. Users also cannot instantly
issue new keys for their identifiers (i.e., there is no immediate
enrollment) but are required to wait for a new block to be
published and confirmed. In practice, this can take 10–60
minutes depending on the desired security level.

On the adoption side, for the system to be completely

trustless, users must store the entire blockchain locally and
track its progress. Experience from Bitcoin shows that the vast
majority of users will not do this due to the communication
and storage requirements and will instead trust some other
party to track the blockchain for them. This trusted party
cannot easily insert spurious records, but can provide stale
information without detection. In any case, the system is not
highly scalable since the required amount of storage and traffic
consumption increases linearly with the number of users.

Finally, there are serious issues with name squatting, which
have plagued early attempts to use the system. Because any-
body can register as many names as they can afford, a number
of squatters have preemptively claimed short and common
names. Given the decentralized nature of blockchains, this is
hard to address without raising the registration fees, which
increases the burden on all users of the system.

E. Other Approaches

Due to space constraints, we omit evaluations of some
approaches in Table I. Readers unfamiliar with web-of-trust
schemes can refer to Appendix B. Identity Based Encryption
(IBE) and Keybase are discussed in the extended paper [1].

F. Discussion

As Table I makes evident, no trust establishment approach
is perfect. While it is common knowledge that usability and
security are often at odds, our results show exactly where the
trade-offs lie. Approaches either sacrifice security and provide
a nearly ideal user experience, or sacrifice user experience
to achieve nearly ideal security scores. Authority-based trust
and TOFU schemes are the most usable and well-adopted,
but only offer basic security properties. Not surprisingly,
authority-based trust (particularly app-specific key directories)
is predominant among recently developed apps in the wild, as
well as among apps with the largest userbases (e.g., iMessage,
BlackBerry Protected, and Wickr).

In practice, we may be faced with the constraint that none of
the usability properties can be sacrificed in a system that will
achieve mass adoption. Higher-security schemes may be useful
within organizations or niche communities, but defending
against mass surveillance requires a communication system
that virtually all users can successfully use. Thus, it may be
wise to start from the basic user experience of today’s widely
deployed communication apps and try to add as much security
as possible, rather than start from a desired security level and
attempt to make it as simple to use as possible.

There appears to be considerable room for security improve-
ments over authoritative key directories even without changes
to the user experience. Transparency logs might provide more
accountability with no interaction from most users. Because
this approach has not yet been deployed, it remains to be
seen how much security is gained in practice. The insertion
of new keys in the log does not provide public evidence of
malicious behavior if insecure user authentication methods
(e.g., passwords) are used to authorize key changes, as we fully
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expect will be the case. Still, the possible loss of reputation
may be enough to keep the server honest.

Another promising strategy is a layered design, with basic
security provided by a central key directory, additional trust
establishment methods for more experienced users (e.g., visual
fingerprint verification or QR-codes), and TOFU warning
messages whenever contacts’ keys have changed. TextSecure
and Threema, among others, take such a layered approach
(represented by the second-to-last row in Table I). In contrast,
OTR uses opportunistic encryption with the ability to perform
the SMP to ensure trust (represented by the last row in Table I).

Conversely, the approaches with good security properties
should focus on improving usability. There has been little
academic work studying the usability of trust establishment.
Further research focusing on end-users’ mental models and
perception for trust establishment could help to develop more
sophisticated and understandable approaches.

IV. CONVERSATION SECURITY

After trust establishment has been achieved, a conversa-
tion security protocol protects the security and privacy of
the exchanged messages. This encompasses how messages
are encrypted, what data is attached to them, and what
cryptographic protocols (e.g., ephemeral key exchanges) are
performed. A conversation security scheme doesn’t specify a
trust establishment scheme nor define how transmitted data
reaches the recipient.

In Table II, we compare the features of existing approaches
for conversation security. Rows without circles in the “group
features” columns can only be used in a two-party setting.

A. Security and Privacy Features

Confidentiality: Only the intended recipients are able to
read a message. Specifically, the message must not be readable
by a server operator that is not a conversation participant.

Integrity: No honest party will accept a message that has
been modified in transit.

Authentication: Each participant in the conversation re-
ceives proof of possession of a known long-term secret from
all other participants that they believe to be participating in
the conversation. In addition, each participant is able to verify
that a message was sent from the claimed source.

Participant Consistency: At any point when a message is
accepted by an honest party, all honest parties are guaranteed
to have the same view of the participant list.

Destination Validation: When a message is accepted by an
honest party, they can verify that they were included in the set
of intended recipients for the message.

Forward Secrecy: Compromising all key material does not
enable decryption of previously encrypted data.

Backward Secrecy: Compromising all key material does
not enable decryption of succeeding encrypted data. This
property is also often called future secrecy [43]. The terms
are controversial and vague in literature [44]–[46].

Anonymity Preserving: Any anonymity features provided
by the underlying transport privacy architecture are not
undermined (e.g., if the transport privacy system pro-
vides anonymity, the conversation security level does not
deanonymize users by linking key identifiers).

Speaker Consistency: All participants agree on the sequence
of messages sent by each participant. A protocol might per-
form consistency checks on blocks of messages during the
protocol, or after every message is sent.

Causality Preserving: Implementations can avoid display-
ing a message before messages that causally precede it.

Global Transcript: All participants see all messages in the
same order. Note that this implies speaker consistency.

Conversation security protocols may provide several differ-
ent forms of deniability. For a detailed treatment of deniability
in various contexts, see Appendix A. We define the following
deniability-related features:

Message Unlinkability: If a judge is convinced that a
participant authored one message in the conversation, this does
not provide evidence that they authored other messages.

Message Repudiation: Given a conversation transcript and
all cryptographic keys, there is no evidence that a given
message was authored by any particular user. We assume that
the accuser has access to the session keys because it is trivial
to deny writing a plaintext message when the accuser cannot
demonstrate that the ciphertext corresponds to this plaintext.
We also assume that the accuser does not have access to the
accused participant’s long-term secret keys because then it is
simple for the accuser to forge the transcript (and thus any
messages are repudiable).

Participation Repudiation: Given a conversation transcript
and all cryptographic key material for all but one accused
participant, there is no evidence that the honest participant
was in a conversation with any of the other participants.

Several additional features are only meaningful for group
protocols (i.e., protocols supporting chats between three or
more participants):

Computational Equality: All chat participants share an
equal computational load.

Trust Equality: No participant is more trusted or takes on
more responsibility than any other.

Subgroup messaging: Messages can be sent to a subset of
participants without forming a new conversation.

Contractible Membership: After the conversation begins,
participants can leave without restarting the protocol.

Expandable Membership: After the conversation begins,
participants can join without restarting the protocol.

When a participant joins a secure group conversation, it is
desirable for the protocol to compute new cryptographic keys
so that the participant cannot decrypt previously sent mes-
sages. Likewise, keys should be changed when a participant
leaves so that they cannot read new messages. This is trivial to
implement by simply restarting the protocol, but this approach
is often computationally expensive. Protocols with expandable
/ contractible membership achieve this without restarts.

There are many higher-level security and privacy design
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TABLE II
CONVERSATION SECURITY PROTOCOLS AND THEIR USABILITY AND ADOPTION IMPLICATIONS. NO APPROACH REQUIRES ADDITIONAL USER EFFORT.
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TLS+Trusted Server†* Skype - - - - - - - - - - - -
Static Asymmetric Crypto†* OpenPGP, S/MIME - - - - - - - - - -
+IBE† Wang et al. - - - - - - - - - - - -
+Short Lifetime Keys OpenPGP Draft - - - - - - - - -
+Non-Interactive IBE† Canetti et al. - - - - - - - - -
+Puncturable Encryption† Green and Miers - - - - - - - - -
Key Directory+Short Lifetime Keys† IMKE - - - - - - - -
+Long-Term Keys† SIMPP - - - - - - - - -
Authenticated DH†* TLS-EDH-MA - - - - -
+Naı̈ve KDF Ratchet* SCIMP - - - -
+DH Ratchet†* OTR - - -
+Double Ratchet†* Axolotl - - -
+Double Ratchet+3DH AKE†* - - - -
+Double Ratchet+3DH AKE+Prekeys†* TextSecure - - - -
Key Directory+Static DH+Key Transport† Kikuchi et al. - - - - - - - - - - - -
+Authenticated EDH+Group MAC† GROK - - - - - - - - - -
GKA+Signed Messages+Parent IDs† OldBlue - - - - - - - -
Authenticated MP DH+Causal Blocks†* KleeQ - - - -
OTR Network+Star Topology† GOTR (2007) - - - - - - - - - - -
+Pairwise Topology† - - - -
+Pairwise Axolotl+Multicast Encryption* TextSecure - - - - -
DGKE+Shutdown Consistency Check† mpOTR - - - - - - - -
Circle Keys+Message Consistency Check† GOTR (2013) - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

issues for secure group chat protocols. For example, the
mechanisms for inviting participants to chats, kicking users
out of sessions, and chat room moderation are all important
choices that are influenced by the intended use cases. We do
not cover these features here because they are implemented at
a higher level than the secure messaging protocol layer.

B. Usability and Adoption

In classic messaging tools, users must only reason about
two simple tasks: sending and receiving messages. However,
in secure communication, additional tasks might be added.
In old secure messaging systems, often based on OpenPGP,
users could manually decide whether to encrypt and/or sign
messages. Many studies have shown that this caused usability
problems [2]–[5], [15]. However, during our evaluation, we
found that most recent secure messenger apps secure all
messages by default without user interaction. Since all imple-
mentations can operate securely once the trust establishment
is complete, we omit the user-effort columns in Table II.
However, we take other usability and adoption factors, such
as resilience properties, into account:

Out-of-Order Resilient: If a message is delayed in transit,
but eventually arrives, its contents are accessible upon arrival.

Dropped Message Resilient: Messages can be decrypted
without receipt of all previous messages. This is desirable for
asynchronous and unreliable network services.

Asynchronous: Messages can be sent securely to discon-
nected recipients and received upon their next connection.

Multi-Device Support: A user can participate in the con-
versation using multiple devices at once. Each device must be
able to send and receive messages. Ideally, all devices have
identical views of the conversation. The devices might use a
synchronized long-term key or distinct keys.

No Additional Service: The protocol does not require any
infrastructure other than the protocol participants. Specifically,
the protocol must not require additional servers for relaying
messages or storing any kind of key material.

C. Two-party Chat Evaluation

1) Trusted central servers (baseline): The most basic con-
versation security features that a secure chat protocol can
provide are confidentiality and integrity. This can be easily
implemented without adversely affecting usability and adop-
tion properties by using a central server to relay messages and
securing connections from clients to the central server using a
transport-layer protocol like TLS. This also allows the central
server to provide presence information. Since this approach
does not negatively affect usability, it is no surprise that this
architecture has been adopted by some of the most popular
messaging systems today (e.g., Skype, Facebook Chat, Google
Hangouts) [47]–[51]. We do not consider these protocols
further because they do not meet our stronger end-to-end
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definition of confidentiality — that messages cannot be read
by anyone except the intended recipient(s). We include this
approach as a baseline in Table II in order to evaluate the
effects of various designs.

Note that the baseline protocols provide all repudiation
features, since there is no cryptographic proof of any activity.
Additionally, these protocols are highly resilient to errors
since there are no cryptographic mechanisms that could cause
problems when messages are lost. The use of a trusted central
server makes asynchronicity and multi-device support trivial.

2) Static Asymmetric Cryptography: Another simple ap-
proach is to use participants’ static long-term asymmetric
keypairs for signing and encrypting.

OpenPGP and S/MIME are two well-known and widely
implemented standards for message protection, mostly used
for email but also in XMPP-based tools [47], [52]–[54].

While this approach provides confidentiality, message au-
thentication, and integrity, it causes a loss of all forms of
repudiation. Additionally, care must be taken to ensure that
destination validation and participant consistency checks are
performed. Without destination validation, surreptitious for-
warding attacks are possible [55]. Without participant con-
sistency, identity misbinding attacks might be possible [44].
Defenses against replay attacks should also be included. These
considerations are particularly relevant since the OpenPGP
and S/MIME standards do not specify how to provide these
features, and thus most implementations remain vulnerable to
all of these attacks [52], [53].

A second issue with naive asymmetric cryptography is the
lack of forward or backward secrecy. One way to address this
issue is to use keys with very short lifetimes (e.g., changing
the key every day). Brown et al. propose several extensions to
OpenPGP based on this principle [56]. In the most extreme
proposal, conversations are started using long-term keys, but
each message includes an ephemeral public key to be used for
replies. This method provides forward and backward secrecy
for all messages except those used to start a conversation.

From a usability and adoption perspective, static key ap-
proaches achieve the same properties as the baseline. Apart
from the non-transparent trust establishment, iMessage is a
prominent example of how static asymmetric cryptography
can achieve end-to-end conversation security with no changes
to the user experience. Since the same long-term keys are
used for all messages, message order resilience, dropped
message resilience, asynchronicity, and multi-device-support
are provided. No additional services are required.

3) FS-IBE: In traditional PKI cryptography, forward se-
crecy is achieved by exchanging ephemeral session keys or
by changing keypairs frequently. The use of key agreement
protocols makes asynchronicity difficult, whereas frequently
changing keypairs requires expensive key distribution. Forward
Secure Identity Based Encryption (FS-IBE) allows keypairs to
be changed frequently with a low distribution cost. Unlike
traditional identity-based encryption schemes, the private key
generators (PKG) in FS-IBE are operated by the end users and
not by a server. Initially, each participant generates a PKG

for an identity-based cryptosystem. Participants generate N
private keys (SKi), one for each time period i, by using their
PKG, and then immediately destroy the PKG. Each private
key SKi is stored encrypted by the previous private key
SKi−1 [45], [57]. The participant then distributes the public
key of the PKG. Messages sent to the participant are encrypted
for the private key corresponding to the current time period.
When a time period concludes, the next secret key is decrypted
and the expired key is deleted. Thus, if intermediate keys
are compromised, the attacker can only retrieve corresponding
future private keys; forward secrecy, but not backward secrecy,
is provided. In contrast to generating key pairs for each time
period, which requires distribution of N keys, only a single
public master key is published; however, the generation still
needs to be repeated after all time periods expire.

Canetti, Halevi and Katz were the first to construct a
non-interactive forward security scheme based on hierarchical
IBE with logarithmic generation and storage costs [57]. In
addition, they showed how their scheme can be extended to
an unbounded number of periods (i.e., the private keys do not
have to be generated in advance), removing the need for addi-
tional services to distribute new keys at the cost of increasing
computational requirements over time. This scheme provides
non-interactive asynchronous forward secrecy without relying
on additional services. However, if messages arrive out of
order, their corresponding private keys might have already
been deleted. As a mitigation, expired keys might be briefly
retained, providing partial out-of-order resilience.

A similar approach is puncturable encryption [58], in which
a recipient can update their private key to prevent future
decryption of a specific message identified by an (arbitrary)
tag. Computational costs and storage costs increase over
time for both systems, introducing scalability concerns. To
our knowledge, neither scheme has been deployed and they
thus merit further development.

4) Authenticated Diffie-Hellman: Many conversation secu-
rity schemes make use of an authenticated Diffie-Hellman
(DH) key exchange to initialize the conversation. In an
authenticated key exchange (AKE) such as authenticated DH,
the participants generate an ephemeral session key and authen-
ticate the exchange using their long-term keys. The resulting
session key is used to derive symmetric encryption and MAC
keys, which then protect messages using an encrypt-then-
MAC approach. This basic design provides confidentiality,
integrity, and authentication. TLS with an ephemeral DH
cipher suite and mutual authentication (TLS-EDH-MA) is
a well-known example of this approach. Note that further
protections are required during key exchange to protect against
identity misbinding attacks violating participant consistency,
such as those provided by the SIGMA protocol [29], [44].

The use of ephemeral session keys provides forward and
backward secrecy between conversations. Message unlinka-
bility and message repudiation are provided since messages
are authenticated with shared MAC keys rather than being
signed with long-term keys. At a minimum, messages can
be forged by any chat participants. Some protocols, such as
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OTR, take additional measures, such as publication of MAC
keys and the use of malleable encryption, to expand the set
of possible message forgers [59]. If the participants simply
sign all AKE parameters, then this approach does not provide
participation repudiation. However, if participants only sign
their own ephemeral keys, these signatures can be reused by
their conversation partners in forged transcripts. OTR uses
this approach to obtain partial participation repudiation due
to a limited set of possible forgers.

Once the AKE has been performed, the encrypt-then-MAC
approach allows messages to be exchanged asynchronously
with out-of-order and dropped message resilience. However,
since a traditional AKE requires a complete handshake before
actual messages can be encrypted, this basic approach requires
synchronicity during conversation initialization. Additionally,
since key agreements can only be performed with connected
devices, there is no trivial multi-device support.

5) Key Evolution: A desirable property is forward secrecy
for individual messages rather than for entire conversations.
This is especially useful in settings where conversations can
last for the lifetime of a device. To achieve this, the session
key from the initial key agreement can be evolved over time
through the use of a session key ratchet [43]. A simple
approach is to use key derivation functions (KDFs) to compute
future message keys from past keys. This naive approach, as
used in SCIMP [60], provides forward secrecy. However, it
does not provide backward secrecy within conversations; if a
key is compromised, all future keys can be derived using the
KDF. Speaker consistency is partially obtained since messages
cannot be surreptitiously dropped by an adversary without
also dropping all future messages (otherwise, recipients would
not be able to decrypt succeeding messages). If messages are
dropped or arrive out of order, the recipient will notice since
the messages are encrypted with an unexpected key. To handle
this, the recipient must store expired keys so that delayed or
re-transmitted messages can still be decrypted, leaving a larger
window of compromise than necessary. Thus, out-of-order and
dropped message resilience are only partially provided.

6) Diffie-Hellman Ratchet: A different ratcheting approach,
introduced by OTR, is to attach new DH contributions to
messages [59]. With each sent message, the sender advertises
a new DH value. Message keys are then computed from
the latest acknowledged DH values. This design introduces
backward secrecy within conversations since a compromised
key will regularly be replaced with new key material. Causality
preservation is partially achieved since messages implicitly
reference their causal predecessors based on which keys they
use. The same level of speaker consistency as the naive KDF
solution can be provided by adding a per-speaker monotonic
counter to messages. A disadvantage of the DH ratchet is that
session keys might not be renewed for every message (i.e.,
forward secrecy is only partially provided). Like the KDF-
based ratchet, the DH ratchet lacks out-of-order resilience; if
a message arrives after a newly advertised key is accepted,
then the necessary decryption key was already deleted.

7) Double-Ratchet (Axolotl): To improve the forward se-
crecy of a DH ratchet, both ratchet approaches can be com-
bined: session keys produced by DH ratchets are used to seed
per-speaker KDF ratchets. Messages are then encrypted using
keys produced by the KDF ratchets, frequently refreshed by
the DH ratchet on message responses. The resulting double
ratchet, as implemented by Axolotl [61], provides forward
secrecy across messages due to the KDF ratchets, but also
backward secrecy since compromised KDF keys will even-
tually be replaced by new seeds. To achieve out-of-order
resilience, the Axolotl ratchet makes use of a second derivation
function within its KDF ratchets. While the KDF ratchets
are advanced normally, the KDF keys are passed through
a second distinct derivation function before being used for
encryption. If a message arrives out of order, the KDF
ratchet can be moved forward while temporarily storing the
old derived message key; if this key is compromised, it does
not impact forward secrecy. Despite these improvements, the
double ratchet still requires synchronicity for the initial AKE.

8) 3-DH Handshake: A triple DH (3-DH) handshake is
a different AKE scheme that provides stronger participa-
tion repudiation. Assuming that Alice and Bob both have
long-term DH keys ga and gb and ephemeral keys gae

and gbe , the 3-DH shared secret s is computed as s =
KDF(DH(gae , gbe)||DH(ga, gbe)||DH(gae , gb)) [61]. If a se-
cure key derivation function is used, a MitM attacker must
either know a and ae, or b and be. Kudla et al. have shown
that the 3-DH key exchange provides the same authentication
level as achieved with the authenticated versions of DH key
agreements [62]. 3-DH achieves full participation repudiation
since anybody is able to forge a transcript between any two
parties by generating both ae and be and performing DH
key exchanges with a and b. Since the secret is partially
derived from the long-term public keys, 3-DH also provides
participant consistency without the need to explicitly exchange
identities after a secure channel has been established. Unfortu-
nately, this also causes a partial loss of anonymity preservation
since long-term public keys are always observable during
the initial key agreement (although future exchanges can be
protected by using past secrets to encrypt these identities).

9) Prekeys: While a double ratchet does not provide asyn-
chronicity by itself, it can be combined with a prekey scheme
to create an asynchronous version of the protocol. Prekeys are
one-time ephemeral public DH contributions that have been
uploaded in advance to a central server. This allows clients
to complete a DH key exchange with a message recipient by
requesting their next prekey from the server. When combined
with a 3-DH exchange, this is sufficient to complete an
asynchronous AKE as part of the first message.

TextSecure [63] is a popular Android app that combines
Axolotl, prekeys, and 3-DH to provide an asynchronous user
experience while sacrificing the no additional service property.
It has gained considerable attention recently after being incor-
porated into WhatsApp [64], [65]. Assuming Axolotl is used
on two devices, the key material can evolve independently
for each device. However, if one of those devices remains
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offline for a long time, a key compromise on that device
is problematic: if the device can use its outdated keys to
read messages that were sent when it was offline, then this
compromise defeats forward secrecy; if the device cannot
read the old messages, then the protocol does not achieve
complete multi-device support. Deciding how long a device
may be offline before it can no longer read buffered messages
is an adoption consideration requiring further study of user
behavior.

D. Group Chat Evaluation

1) OTR for groups: Several protocols have been proposed
to achieve OTR-like repudiation properties for group conver-
sations. The TextSecure protocol can be naturally extended to
groups by sending messages to each recipient using the two-
party TextSecure protocol [66]. Multicast encryption is used
for performance: a single encrypted message is sent to a central
server for relaying to recipients while the decryption key for
the message is sent pairwise using TextSecure. This design
does not provide any guarantees of participant consistency,
but it inherits the asynchronicity of the two-party TextSecure
protocol. Speaker consistency and causality preservation are
achieved by attaching preceding message identifiers to mes-
sages. A message identifier is a hash of the sender, the list of
preceding identifiers, and the message contents.

A repudiable group chat scheme can also be designed by
utilizing a deniable group key exchange (DGKE) protocol,
as in the mpOTR protocol [67], [68]. When completed, the
DGKE provides each participant with a shared secret group
key and individual ephemeral signing keys. This information
is authenticated with long-term keys in a manner providing
participation repudiation while still authenticating participants
— participants receive proof of each other’s identities, but
this proof cannot be used to convince outsiders. Messages
are encrypted with the shared group key and signed with
the ephemeral keys. The ephemeral signatures provide proof
of authorship to others in the group but, because outsiders
cannot be certain that these ephemeral signing keys correspond
to specific long-term keys, message repudiation is preserved.
However, since all messages from an individual are signed
with the same (ephemeral) key, the protocol does not have mes-
sage unlinkability. To provide speaker consistency, a check is
performed on shutdown whereby hashes of messages sent by
each participant are exchanged. If this check fails, messages
must be individually compared to uncover discrepancies. In
this scheme, subgroup messaging is not possible since all
messages share a single encryption key. The group is also not
expandable or contractible without performing a new DGKE.

A completely different approach is taken by the GOTR
protocol released in 2013 (we write the year to distinguish
it from a different protocol with the same name from 2007).
GOTR (2013) [69] is built using a “hot-pluggable” group
key agreement (GKA) protocol, allowing members to join
and drop out of the conversation with little overhead. This
system involves the use of “circle keys”: sets of public keys
having the property that a shared secret key can be computed

by anyone with a private key matching a public key in
the set. The key exchange mechanism in this protocol is
relatively complex; due to space constraints, we refer the
interested reader to the original publication for details [69].
Pairwise secure channels are set up between participants to
send consistency check messages. These consistency channels
have the effect of providing global transcript order, but all
participants are required to be online to receive messages. The
system otherwise provides features similar to mpOTR but with
flexible group membership and message unlinkability.

E. Other Approaches

Due to space constraints, there are several approaches in
Table II for which we omit detailed evaluations. Protocols
such as IMKE [70] and SIMPP [71]–[73] use a central server
to exchange ephemeral keys. GROK [74] and the protocol
of Kikuchi et al. [75] are early attempts to support secure
group chat, and involve a conversation leader transmitting an
ephemeral group key to others with the help of a central server.
Group chat protocols such as OldBlue [76] and KleeQ [77]
provide mechanisms to preserve causality of messages sent
over unreliable networks. These protocols are evaluated in
the extended paper [1]. Other designs include pairwise OTR
connections, or a trusted server that is connected to using OTR,
as in the GOTR (2007) scheme [78]. Appendix C discusses
these designs. The recently proposed (n+1)sec protocol [79]
provides a DGKE and checks for transcript consistency.

F. Discussion

Similar to our study of trust establishment, Table II makes
immediately clear that no conversation security protocol pro-
vides all desired properties. Since most of the properties in the
table are not mutually exclusive, however, there is significant
room for improvement by combining protocol designs and this
should be seen as a tangible and important call to action for
the research community.

Sadly, the most widely adopted solutions also have the
worst security and privacy properties, with most non-security-
focused applications providing only basic static asymmetric
cryptography. This does not appear to be due to the usability
drawbacks of the more secure protocols: once the trust estab-
lishment has been done, all of the conversation security ap-
proaches we studied can be automated without any additional
effort for the user. An exception is enabling asynchronous
communication while still providing forward and backward
secrecy; the only solution for this problem that appears to
have any significant deployment in practice is the prekeys
approach implemented by TextSecure. This requires relatively
complicated infrastructure compared to a simple key server,
introduces problems for multi-device support, and is prone
to denial-of-service attacks if it is used in anonymous com-
munication. This approach is poorly studied in the academic
literature. The FS-IBE scheme discussed in Section IV-C3
promises to resolve the issues of server complexity and denial
of service, but introduces new challenges such as scalability
and performance issues [57]. Unlike prekeys (Section IV-C9),
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this scheme has received a considerable amount of follow-
up research and academic citations, but we are unaware
of any practical tool implementing it. In addition, a time-
window based FS-IBE scheme requires holding the ephemeral
keys for a certain amount of time to allow decryption of
delayed messages. Improving the practicality of FS-IBE and
puncturable encryption schemes warrants further research.

Another outstanding concern that limits adoption of secure
conversation security protocols is the limited support for mul-
tiple devices. Despite a vast number of users owning multiple
devices, only the most insecure protocols support this property
without requiring users to perform pairing procedures. Device
pairing has proved extremely difficult for users in practice [80],
[81] and allowing users to register multiple devices with
distinct keys is a major usability improvement.

When it comes to group chat properties, we can identify
several areas for improvement in Table II. Classic protocols
often do not provide participant consistency or destination
validation, making them potentially vulnerable to surreptitious
forwarding or identity misbinding attacks. However, these are
sometimes addressed in concrete implementations. The double
ratchet used in Axolotl improves forward secrecy with low cost
in performance, implementation complexity, and resilience,
but it has not yet been thoroughly evaluated in an academic
context. Additionally, decentralized group chat systems in-
herently permit a participant to send different messages to
different people. Due to network conditions, users can also
end up observing significantly different transcripts. Despite
these intrinsic weaknesses, surprisingly few protocols explic-
itly consider speaker consistency or causality preservation.

Existing solutions achieve mixed results concerning repu-
diation. Only the OTR-like protocols, namely the two-party
protocols based on authenticated DH key exchanges and the
OTR-like group protocols, offer both message and participant
repudiation while also providing authentication.

There are also additional adoption constraints imposed by
many modern secure group chat protocols. Group protocols
often choose to employ either a trusted participant or an
additional service to improve protocol performance, which
can lead to security concerns or introduce additional costs
for deployment. Very few group protocols support subgroup
messaging, and just as few support changing group member-
ship after the conversation has started without incurring the
substantial costs of a new protocol run. Additionally, many
proposed designs require synchronicity in order to simplify
their protocols, which largely precludes their use on current
mobile devices.

V. TRANSPORT PRIVACY

The transport privacy layer defines how messages are ex-
changed, with the goal of hiding message metadata such as
the sender, receiver, and conversation to which the message
belongs. Some transport privacy architectures impose topolog-
ical structures on the conversation security layer, while others
merely add privacy to data links between entities. The transport
privacy schemes may also be used for privacy-preserving

contact discovery. In this section, we compare approaches for
transport privacy in terms of the privacy features that they
provide, as well as usability concerns and other factors that
limit their adoption. Table III compares the various schemes.

A. Privacy Features

We make the distinction between chat messages, which
are the user-generated payloads for the messaging protocol
to exchange, and protocol messages, which are the underlying
data transmissions dictated by the upper protocol layers. We
define following privacy properties:

Sender Anonymity: When a chat message is received, no
non-global entities except for the sender can determine which
entity produced the message.

Recipient Anonymity: No non-global entities except the
receiver of a chat message know which entity received it.

Participation Anonymity: No non-global entities except the
conversation participants can discover which set of network
nodes are engaged in a conversation.

Unlinkability: No non-global entities except the conver-
sation participants can discover that two protocol messages
belong to the same conversation.

Global Adversary Resistant: Global adversaries cannot
break the anonymity of the protocol.

B. Usability Properties

Contact Discovery: The system provides a mechanism for
discovering contact information.

No Message Delays: No long message delays are incurred.
No Message Drops: Dropped messages are retransmitted.
Easy Initialization: The user does not need to perform any

significant tasks before starting to communicate.
No Fees Required: The scheme does not require monetary

fees to be used.

C. Adoption Properties

Topology Independent: No network topology is imposed on
the conversation security or trust establishment schemes.

No Additional Service: The architecture does not depend on
availability of any infrastructure beyond the chat participants.

Spam/Flood Resistant: The availability of the system is
resistant to denial-of-service attacks and bulk messaging.

Low Storage Consumption: The system does not require a
large amount of storage capacity for any entity.

Low Bandwidth: The system does not require a large
amount of bandwidth usage for any entity.

Low Computation: The system does not require a large
amount of processing power for any entity.

Asynchronous: Messages sent to recipients who are offline
will be delivered when the recipient reconnects, even if the
sender has since disconnected.

Scalable: The amount of resources required to maintain
system availability scales linearly with the number of users.
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TABLE III
TRANSPORT PRIVACY SCHEMES. EVERY PRIVACY-ENHANCING APPROACH CARRIES USABILITY AND/OR ADOPTION COSTS.
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Store-and-Forward†* Email/XMPP - - - - - - -
+DHT Lookup†* Kademlia - - -
Onion Routing+Message Padding†* Tor - - - - -
+Hidden Services* Ricochet - - - -
+Inbox Servers† - - - - - -
+Random Delays†* Mixminion - - - - -
+Hidden Services+Delays+Inboxes+ZKGP* Pond - - - -
DC-Nets†* - - - - - - - - -
+Silent Rounds† Anonycaster - - - - - - -
+Shuffle-Based DC-Net+Leader† Dissent - - - - - - -
+Shuffle-Based DC-Net+Anytrust Servers† Verdict - - - - - - -
Message Broadcast† - - - - - - -
+Blockchain - - - - - - - -
PIR* Pynchon Gate - - - - -

= provides property; = partially provides property; - = does not provide property; †has academic publication; *end-user tool available

D. Evaluation

1) Store-and-Forward (baseline): To evaluate the effec-
tiveness and costs of different transport privacy architectures
in Table III, we compare the solutions to a baseline. For
the baseline protocol, we assume a simple store-and-forward
messaging protocol. This method is employed by email and
text messaging, causing minor message delays and storage
requirements for intermediate servers. Since email headers
contain sender and recipient information, a simple store-and-
forward mechanism does not provide any privacy properties.

2) Onion Routing: Onion routing is a method for commu-
nicating through multiple proxy servers that complicates end-
to-end message tracing [82]. In onion routing, senders send
messages wrapped in multiple layers of encryption through
preselected paths of proxy servers. These servers unwrap
layers of encryption until the original message is exposed,
at which point it is relayed to the final destination. Each
node in the path only knows the immediate predecessor and
successor in the path. The routing process adds some latency to
messages, but otherwise retains the baseline usability features.
An onion routing protocol, such as the widely used Tor pro-
tocol [83], provides sender anonymity, participant anonymity,
and unlinkability against network attackers with limited scope.
Tor also includes an extension called hidden services that
provides recipient anonymity.

Global network adversaries are still able to break the
anonymity properties of simple onion routing designs by per-
forming statistical analysis incorporating features such as con-
tent size, transmission directions, counts, and timing, among
others. The success of such an adversary can be limited by in-
dividually eliminating these features. Protection can be added,
for example, by introducing random delays to transmissions.
The longer the allowed delays, the less statistical power is
available to the adversary. Of course, this imposes potentially

long message delays and additional storage requirements for
relays, making it unusable for synchronous instant messaging.
Mixminion is an implementation using this technique [84].

Unfortunately, random delays do not completely defeat
global adversaries. The only way to do so is to make transmis-
sion indistinguishable from no transmission (e.g., by saturating
the bandwidth of all connections). However, in practice, this is
likely infeasible. Adoption of onion routing is limited by the
requirement to establish a large network of nodes to provide
a sufficient anonymity set and cover traffic.

To provide asynchronous communication support, store-
and-forward servers can be incorporated into the onion routing
model. Each user is associated with a Tor hidden service that
remains online. To send a message, the sender constructs a
circuit to the recipient’s server and transmits the message.
Users periodically poll their own servers to determine if any
messages are queued. Ricochet is an example of this approach.

Pond uses this design for its transmission architecture [85]
but adds random delays between connections, all of which
transmit the same amount of data, to weaken statistical analysis
by network adversaries. This design requires storage commit-
ments by servers and also introduces very high latency.

Without additional protections, this scheme is also highly
vulnerable to denial-of-service attacks because connection
delays and fixed transmission sizes artificially limit bandwidth
to very low levels. Pond addresses this by requiring users to
maintain group lists secured by zero-knowledge-group-proof
schemes (ZKGP). This way, recipients can upload contact lists
without revealing their contacts. Simultaneously, senders can
authenticate by providing zero-knowledge proofs that they are
in this list. The BBS signature scheme [86] is currently used
by Pond to achieve this.

3) DC-nets: Dining Cryptographer networks (DC-nets) are
anonymity systems that are often compared to onion routing
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schemes. DC-nets are group protocols that execute in rounds.
At the start of each round, each participant either submits a
secret message or no message. At the end of the round, all
participants receive the xor of all secret messages submitted,
without knowing which message was submitted by which
participants. In this way, DC-nets provide sender anonymity
while also achieving global adversary resilience — no statis-
tical analysis can reveal the sender of a message. Recipient
anonymity can be achieved by using the protocol to publish
an ephemeral public key. Messages encrypted with this key
are then sent and, since the owner of the matching private
key is unknown, the participant able to decrypt the messages
cannot be determined. Since messages are sent in rounds, DC-
nets add message latency and do not support asynchronous
communication; dropped messages prevent the protocol from
advancing. Messages are easily linked by observing which net-
work nodes participate in a round. Additionally, DC-nets have
limited scalability due to requiring pairwise communication.

The basic DC-net design has a problem with collisions: if
two parties submit a message in the same round, the result
will be corrupted. A malicious participant can exploit this to
perform an anonymous denial-of-service attack by submitting
garbled messages each round. Worse still, an active network
attacker can also perform this attack by perturbing transmitted
bits. There are several approaches to mitigate this problem.
Anonycaster [87] adds pseudorandomly determined “silent
rounds” where all members know that no message should
be contributed. Receipt of a message during a silent round
indicates a denial-of-service attack by an active network at-
tacker. However, malicious participants can still launch attacks
by sending garbled messages only during non-silent rounds.

Dissent [88]–[90] and Verdict [91] take a different approach
by constructing a DC-net system through the use of a verifiable
shuffle and bulk transfer protocol. Shuffle-based DC-nets can
include a blame protocol to pinpoint the entity that caused a
round to fail. Dissent appoints one participant as a leader to
manage round timing, the blame protocol, and exclusion of
disconnected members from rounds, thereby restoring support
for asynchronicity. Verdict uses an alternative approach where
the DC-net protocol is executed by a set of central servers that
clients connect to, providing greater scalability and maintain-
ing security as long as any one server is honest.

While DC-nets are primarily a transport privacy mechanism,
they are distinguished from other schemes by their use of
rounds and the fact that every network node is also a par-
ticipant in the conversation. When using DC-nets to transmit
higher-level conversation security protocols, it is important for
designers to consider how these properties affect the overall
security of the scheme (e.g., the use of synchronous rounds
creates a global transcript, and the details of the DC-net key
exchanges may cause a loss of participation repudiation).

4) Broadcast Systems: There is a simple approach to pro-
viding recipient anonymity against all attackers, including
global adversaries: distributing messages to everyone. This ap-
proach provides recipient anonymity, participation anonymity,
and unlinkability against all network attackers. It also provides

a natural way to discover contacts because requests for contact
data can be sent to the correct entity without knowledge of
any addressing information. However, there are some serious
downsides that hinder adoption: broadcasting a message to
everyone in the network requires high bandwidth, there is
no support for asynchronicity, and it has extreme scalability
issues. Additionally, it is easy to attack the availability of
the network through flooding. Bitmessage [92], a broadcast-
based transport system, either requires a proof of work or
monetary fees to send messages in order to limit spam, adding
computation requirements and message delays as represented
by the blockchains row in Table III. It is also possible to
alleviate scalability problems by clustering users into smaller
broadcast groups, at the cost of reduced anonymity set sizes.

5) PIR: Private Information Retrieval (PIR) protocols allow
a user to query a database on a server without enabling the
server to determine what information was retrieved. These
systems, such as the Pynchon Gate [93], can be used to
store databases of message inboxes, as well as databases of
contact information. Recipient anonymity is provided because,
while the server knows the network node that is connecting
to it, the server cannot associate incoming connections with
protocol messages that they retrieve. For the same reason, the
protocols offer participation anonymity and unlinkability. By
default, there is no mechanism for providing sender anonymity.
These systems are naturally asynchronous, but they result in
high latency because inboxes must be polled. The servers also
incur a high storage cost and are vulnerable to flooding at-
tacks. PIR implementations can be divided into computational
schemes, which rely on computational limitations of the server,
information-theoretic schemes, which rely on non-collusion of
servers, and hybrid schemes that combine properties of both.
PIR implementations differ in their bandwidth, computation,
and initialization costs, as well as their scalability. PIR is not
widely adopted in practice because one or more of these costs
is usually prohibitively high.

E. Discussion

If messages are secured end-to-end, leaving only identifiers
for anonymous inboxes in the unencrypted header, then meta-
data is easily hidden from service operators. Assuming that
each message is sent using new channels, an adversary is
not able to link single messages to conversations. However,
such schemes introduce adoption and usability issues; they
are prone to spam, flooding, and denial-of-service attacks, or
require expensive operations such as zero-knowledge authenti-
cation posing barriers to adoption. Worse still, hiding metadata
from a global adversary in these schemes necessitates serious
usability problems such as long delays.

In contrast, decentralized schemes either exhibit synchronic-
ity issues or have serious scalability problems. Most de-
centralized projects, especially BitTorrent-based approaches,
lack detailed documentation that is required for complete
evaluation. Some tools claiming to hide metadata only do so
in the absence of global network adversaries, which recent
surveillance revelations suggest may exist.
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Broadcast-based schemes can achieve the best privacy
properties, but exhibit serious usability issues, such as lost
or delayed messages, in addition to apparently intractable
scalability issues. Finally, care must be taken when selecting
a conversation security scheme to avoid leaking cryptographic
material or identifiers that might lead to deanonymization.

VI. CONCLUDING REMARKS

The vast majority of the world’s electronic communication
still runs over legacy protocols like SMTP, SMS/GSM, and
centralized messengers, none of which were designed with
end-to-end security in mind. We encourage the research com-
munity to view the high-profile NSA revelations in the United
States as a golden opportunity to encourage the adoption of
secure systems in their place. As the old adage goes: “never
let a crisis go to waste.”

Unfortunately, while we have seen considerable progress in
practical tools over the past two years, there is little evidence
suggesting that academic research on secure messaging has
dramatically increased. This is unfortunate for two reasons:
First, many interesting problems of practical importance re-
main unresolved. In particular, apparent practical deployment
constraints, including limitations for asynchronous commu-
nication, multiple independent devices, and zero user effort,
are not fully appreciated in most published research papers.
Second, many theoretically solved problems are not considered
in practice, whether because developers are unaware of their
existence, or because they cannot immediately translate the
cryptographic publications into working systems.

Our effort to systematize existing knowledge on secure mes-
saging suggests three major problems must be resolved: trust
establishment, conversation security and transport privacy.
The schemes can largely be chosen independently, yielding a
vast design space for secure messaging systems. Yet we also
caution against a proliferation of a-la-carte systems for specific
niches. The main purpose of communication networks is to
interact with others and there is considerable value in having
a small number of popular protocols that connect a large
number of users. Currently, everyone uses email and hence
many people fall back to this method despite its insecurity.

We also note that, disappointingly, most of the exciting
progress being made right now is by protocols that are either
completely proprietary (e.g., Apple iMessage) or are open-
source but lack a rigorously specified protocol to facilitate
interoperable implementations (e.g., TextSecure). An open
standard for secure messaging, combining the most promising
features identified by our survey, would be of immense value.

Inevitably, trade-offs have to be made. We conclude that
secure approaches in trust establishment perform poorly in
usability and adoption, while more usable approaches lack
strong security guarantees. We consider the most promising
approach for trust establishment to be a combination of central
key directories, transparency logs to ensure global consistency
of the key directory’s entries, and a variety of options for
security-conscious users to verify keys out of band to put
pressure on the key directory to remain honest.

Our observations on the conversation security layer sug-
gest that asynchronous environments and limited multi-device
support are not fully resolved. For two-party conversation
security, per-message ratcheting with resilience for out-of-
order messages combined with deniable key exchange pro-
tocols, as implemented in Axolotl, can be employed today
at the cost of additional implementation complexity with
no significant impact on user experience. The situation is
less clear for secure group conversations; while no approach
is a clear answer, the TextSecure group protocol provides
pragmatic security considerations while remaining practical. It
may be possible to achieve other desirable properties, such as
participant consistency and anonymity preservation, by incor-
porating techniques from the other systems. It remains unclear
exactly what consistency properties are required to match
users’ expectations and usability research is sorely needed to
guide future protocol design. Finally, transport privacy remains
a challenging problem. No suggested approaches managed
to provide strong transport privacy properties against global
adversaries while also remaining practical.

We consider this systematization to be a useful assessment
of published research and deployment experience. We have
uncovered many open challenges and interesting problems to
be solved by the research community. The active development
of secure messaging tools offers a huge potential to provide
real-world benefits to millions; we hope this paper can serve
as an inspiration and a basis for this important goal.
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APPENDIX A
DENIABILITY

Deniability, also called repudiability, is a common goal
for secure messaging systems. Consider a scenario where
Bob accuses Alice of sending a specific message. Justin, a
judge, must decide whether or not he believes that Alice
actually did so. If Bob can provide evidence that Alice sent
that message, such as a valid cryptographic signature of the
message under Alice’s key, then we say that the action is non-
repudiable. Otherwise, the action is repudiable or deniable.
We can distinguish between message repudiation, in which
Alice denies sending a specific message, and participation
repudiation in which Alice denies communicating with Bob
at all. The high-level goal of repudiable messaging systems is
to achieve deniability similar to real-world conversations.
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A fundamental problem of deniability is that Justin may
simply trust Bob even with no technical evidence due to Bob’s
reputation or perceived indifference. In a group chat, this
problem may be even worse as Alice may need to convince
Justin that a number of accusers are all colluding to frame
her. It is not possible to construct a messaging system that
overcomes this fundamental social problem; the best that can
be done is to provide no stronger evidence than the word of the
accusers. Some technical systems clearly offer more evidence;
for example, signed PGP emails offer strong evidence that
Alice really was the sender.

The cryptographic literature has produced many definitions
of “deniability” since deniable encryption was first formally
proposed [94]. For example, we can draw a distinction between
an offline and online judge: in the offline case, the accuser
attempts to convince the judge of an event after the conver-
sation has already concluded; in the online case, the judge
exchanges private communications with the accuser while the
conversation is still taking place. Existing work defines online
repudiation in incompatible ways, and very few protocols
attempt to achieve meaningful online repudiation [69], [95].
Thus, in this work we only consider the offline setting.

APPENDIX B
WEB OF TRUST

In a web of trust scheme, users verify each other’s keys
using manual verification and, once they are satisfied that a
public key is truly owned by its claimed owner, they sign
the key to certify this. These certification signatures might be
uploaded to key servers. If Alice has verified Bob’s key, and
Bob certifies that he has verified Carol’s key, Alice can then
choose to trust Carol’s key based on this assertion from Bob.
Ideally, Alice will have multiple certification paths to Carol’s
key to increase her confidence in the key’s authenticity.

The user interface for web of trust schemes tends to be
relatively complex and has never been fully standardized. The
scheme also requires a well-connected social graph, hence
the motivation for “key-signing parties” to encourage users
to form many links within a common social context.

Assuming that the web of trust model performs correctly,
MitM attacks by network and operator adversaries are limited
due to distribution of trust. However, since key revocations
and new keys might be withheld by key servers, the model
offers only partial operator accountability and key revocation.
Since the web of trust model produces a public social graph,
it is not privacy preserving.

The key initialization phase requires users to get their keys
signed by other keys, so the system does not offer automatic
key initialization, alert-less key renewal, or immediate enroll-
ment, and is not inattentive user resistant. Because users must
participate in key-signing parties to create many paths for trust

establishment, users have a high key maintenance overhead
and a need for an out-of-band channel. Even worse, users
must understand the details of the PKI and be able to decide
whether to trust a key.

PGP typically uses a web of trust for email encryption
and signing. In practice, the PGP web of trust consists of
one strongly connected component and many unsigned keys
or small connected components, making it difficult for those
outside the strongly connected component to verify keys [96].

A simplification of the general web of trust framework is
SDSI [97] (Simple Distributed Security Infrastructure) later
standardized as SPKI [98], [99] (Simple Public Key Infras-
tructure). With SDSI/SPKI, Bob can assert that a certain key
belongs to “Carol” and, if Alice has verified Bob’s key as be-
longing to “Bob,” that key will be displayed to Alice as “Bob’s
Carol” until Alice manually verifies Carol’s key herself (which
she can then give any name she wants, such as “Carol N.”).
We refer to these approaches as trust delegation. A modern
implementation is the GNU Name System (GNS) [100], [101],
which implements SDSI/SPKI-like semantics with a key server
built using a distributed hash table to preserve privacy. Other
web of trust approaches such as SDSI [97], [98], SPKI [99],
Keybase [102] and GNS [100] are described and evaluated in
the extended version of this paper [1].

APPENDIX C
OTR NETWORKS

Since OTR [59] provides desirable features for two-party
conversations, it is natural to extend it to a group setting by
using OTR to secure individual links in a network. A basic
strategy is to enlist a trusted entity to relay messages and
then secure client links to this entity using OTR. This is
the approach taken by the GOTR (2007) protocol. GOTR
(2007) [78] selects a participant to act as the relay, forming a
star topology of pairwise connections with the selected partic-
ipant acting as the hub. All authentication properties, speaker
consistency, and causality preservation are lost because they
do not persist across the relay node. Since the relay server
can buffer messages, asynchronicity is provided as long as the
relay node remains online. All other properties are inherited
from OTR. Groups can be expanded and contracted simply
by establishing new OTR connections to the relay.

Instead of using a star topology, pairwise OTR connections
between all participants can be established. This approach
restores authentication and anonymity preservation, as well as
equal trust between members. It is also possible to send mes-
sages to subgroups by only transmitting the message across
selected OTR links. The downside of this approach is that it
does not preserve causality or provide speaker consistency;
participants can send different messages to different people.
This design also incurs significant computational overhead.
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