
This paper is included in the Proceedings of the
Seventeenth Symposium on Usable Privacy and Security.

August 9–10, 2021
978-1-939133-25-0

Open access to the Proceedings of the
Seventeenth Symposium on Usable Privacy

and Security is sponsored by

A Qualitative Usability Evaluation of the Clang Static
Analyzer and libFuzzer with CS Students and CTF

Players
Stephan Plöger, Fraunhofer FKIE; Mischa Meier, University of Bonn;

Matthew Smith, University of Bonn, Fraunhofer FKIE

https://www.usenix.org/conference/soups2021/presentation/ploger

A Qualitative Usability Evaluation of the Clang Static Analyzer and libFuzzer
with CS Students and CTF Players

Stephan Plöger
Fraunhofer FKIE

Mischa Meier
University of Bonn

Matthew Smith
University of Bonn, Fraunhofer FKIE

Abstract

Testing software for bugs and vulnerabilities is an essen-
tial aspect of secure software development. Two paradigms
are particularly prevalent in this domain: static and dynamic
software testing. Static analysis has seen widespread adop-
tion across the industry, while dynamic analysis, in particular
fuzzing, has recently received much attention in academic
circles as well as being used very successfully by large cor-
porations such as Google, where for instance, over 20,000
bugs have been found and fixed in the Chrome project alone.
Despite these kinds of success stories, fuzzing has not yet
seen the kind of industry adoption static analysis has.

To get first insights, we examine the usability of the static
analyzer Clang Static Analyzer and the fuzzer libFuzzer. To
this end, we conducted the first qualitative usability evalua-
tion of the Clang Static Analyzer [6] and libFuzzer [16]. We
conducted a mixed factorial design study with 32 CS masters
students and six competitive Capture the Flag (CTF) play-
ers. Our results show that our participants encountered severe
usability issues trying to get libFuzzer to run at all.

In contrast to that, most of our participants were able to run
the Clang Static Analyzer without significant problems. This
shows that, at least in this case, the usability of libFuzzer was
worse than of the Clang Static Analyzer. We make suggestions
on how libFuzzer could be improved and how both tools
compare.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2021.
August 8–10, 2021, Virtual Conference.

1 Introduction

The number of critical security vulnerabilities is rising, with
the same type of programming mistakes being made over and
over again. Testing software for bugs and vulnerabilities is
one crucial aspect of helping developers write secure code
and countering this development.

The two prevalent approaches for application security test-
ing are static analysis and dynamic analysis.

Static analysis has seen widespread adoption across the
industry, dominating the leaders’ portfolio of the April 2020
Gartner magic quadrant for application security testing [13].
Dynamic analysis, and in particular fuzzing, has received
much attention in academia in recent years, as can be seen
by this selection of fuzzing papers published in 2020 alone:
[19,29,31–35,38,41–44,46,47,49–51,53,54,58,60–65,67,69,
78–87]. Moreover, large software companies such as Google,
Microsoft, Cisco and other use fuzzing very successfully, for
instance, using fuzzing Google found over 20,000 bugs in
Chrome alone [3]. Despite these impressive results, fuzzing
has not yet found the same adoption in industry that static
analysis has.

In this paper, we examine the usability of the static ana-
lyzer Clang Static Analyzer and the fuzzer libFuzzer to get
first insights into the question of whether usability issues
might be hindering the adoption of fuzzing. For our study, we
evaluated several fuzzers and static analyzers. We selected
the Clang Static Analyzer because it performed very well in
the comparison of Arusoaie et al. [28] and libFuzzer because
it is a popular example of a dynamic code analysis tool in
academia [46, 55, 66]. However, we would like to stress that
neither the Clang Static Analyzer nor libFuzzer are necessar-
ily representative examples of static and dynamic analysis
tools. Moreover, since the tools are good at finding bugs of
different types, our evaluation should not be seen as a like for
like comparison but as gathering first insights into usability
strengths and weaknesses of two different tools.

We performed a qualitative mixed factorial design study
with 32 CS master students and six competitive Capture the

USENIX Association Seventeenth Symposium on Usable Privacy and Security 553

Flag (CTF) competitors to evaluate the usability of the Clang
Static Analyzer and libFuzzer with an easy and a hard task.
We designed an easy and a hard task to get a broader view of
the tools. The easy task was designed to see if participants
could get the tool running in principle while the hard task
was designed to reflect a more realistic challenge as would
be faced in a real project. The two tools were studied using a
within-subjects design to also gather comparative insights of
the two tools. The difficulty of the tasks was tested between-
subjects with the CS students. The CTF participants only got
the hard task. Participants had ten hours over a period of ten
days per task to work on the solution.

Our results indicate that the Clang Static Analyzer is easy
to use in principle, but it did not scale well to the hard task.
Only one CTF participant was able to find the bug, due to a
large amount of false positive warnings. With libFuzzer the
usability hurdles were much higher, and many CS participants
did not manage to solve even the easy task. Even the CTF
players did not manage to find the bug in the time allotted
although they were able to use libFuzzer in principle. While
the majority of participants only failed in the last step of
the Clang Static Analyzer, we found usability problems in
every step needed to use libFuzzer, which we will discuss
throughout the paper.

Supplementary to the Appendix, we provide additional in-
formation in a companion document which can be found here:
https://uni-bonn.sciebo.de/s/dUH7FOedjHbG5vy.

2 Related Work

The related work section is divided into two parts: usability
evaluations of static analysis tools and study methodology
concerning developer studies. To the best of our knowledge
there are no studies concerning the usability of fuzzers or a
usability comparison of static analysis and fuzzing.

Static Analysis Studies Smith et al. [72] conducted a
heuristic walkthrough and a user study about the usability
of four static analysis tools. They used Find Security Bugs
and an anonymized commercial tool for Java, RIPS for PHP
and Flawfinder for C. They identified several issues ranging
from problems of the inaccuracy of the analysis over workflow
integration to features that do not scale. They also conducted
a think-aloud study in 2013 with five professional software
developers and five students who had contributed to a security-
critical Java medical records software system [73, 74]. They
wanted to study the needs while assessing security vulnerabil-
ities in software code. The participants worked on four tasks
for a maximum of one hour in a lab. However, participants
were only asked to examine the reports of the static analysis
tool and fix potential bugs but not to run the tool itself. Based
on their finding they gave recommendations for the design
of static analysis tools. Their main suggestion was that tools

should help developers search for relevant web resources. Our
study goes beyond this work, since they actually had to use
the tool and had more time to do so.

In 2013 Johnson and Song conducted 20 interviews about
static code analysis with 20 developers [48]. They found that
most participants felt that using static analysis tools is ben-
eficial but that the high number of false positives and the
presentation of the bugs were demotivating. In 2016 Chris-
takis and Bird conducted a survey at Microsoft to get more
insights into the use of static code analysis [37]. They set the
focus on the barriers of using static analysis, the functionality
that the developers desire and the non-functional characteris-
tics that a static analyzer should have. They also found that
false-positive rates were the main factor leading developers
to stop using the analyzer. Developers were willing to guide
the analyzer and desired customizability and the option to
prioritize warnings. Vassallo et al. confirmed those findings
in 2018 [25].

Sadowski and colleges presented a set of guiding principles
for their program analysis tool Tricorder, a program analysis
platform developed for Google. They included an empirical
in-situ evaluation emphasizing that developers do not like
false positives and that workflow integration is key [68].

A comparison of open-source static analysis tools for
C/C++ code was done by Arusoaie et al. in 2017 [28]. They
compared 11 analysis tools on the Toyota ITC test suite [70].
They ranked them by productivity which balances the de-
tection rate with the false-positive rate to compensate for a
high false-positive rate. The top three performers were clang,
Frama-C [12] and OCLint [20].

Study Methodology Since it is difficult to recruit profes-
sional developers [26, 27, 71], Naiakshina conducted a study
to evaluate CS students’ use in developer studies [57]. They
found that for their password storage study students were a
viable proxy for freelance developers. Naiakshina followed
this up with a comparison to professional developers in Ger-
man companies [56]. Here they found that the professional
developers preformed better overall than students, but that the
effects of the independent variables on the dependent ones
held none the less and thus conclude that CS students could
be used for comparative studies in their case.

A study by Votipka showed that taking part in CTF games
tends to have a positive effect on security thinking [76] and
hackers are comparable to testers in software vulnerability
discovery processes [77].

3 Methodology

We wanted to gain insights into the usability issues of the
Clang Static Analyzer and libFuzzer. In the following, we
will discuss the design and methodology of the two studies
we conducted to do this.

554 Seventeenth Symposium on Usable Privacy and Security USENIX Association

https://uni-bonn.sciebo.de/s/dUH7FOedjHbG5vy

3.1 Tool Selection
We decided to pick one tool per category instead of a spread
since it was expected that we would not be able to recruit
enough participants to compare multiple tools.

Static Analysis We evaluated the popular commercial static
analysis tools Fortify [17], Coverity [9], CodeSonar [7] and
checkmarx [4]. Unfortunately, they all forbid publishing eval-
uations in their terms of use [5, 8, 10, 18]. We based our se-
lection of the open-source static analysis tool on the eval-
uation of Arusoaie et al. [28]. Based on this, we selected
the Clang Static Analyzer, which was the analyzer with the
highest productivity rate, a combination of detection rate and
false-positive rate, and the highest win rate combining all
subcategories within their analysis. We selected the Clang
Static Analyzer in version 8.0 as it was the latest version at
the time we conducted the first study.

Dynamic Analysis When designing the study, there were
no popular commercial fuzzers for C/C++ code available,
so we only evaluated the open-source fuzzers: AFL [1],
AFL++ [2], libFuzzer, honggfuzz [14] and radamsa [21].
Our literature review showed that AFL/AFL++ and its forks,
as well as libFuzzer, are the most common fuzzers in use
[30, 31, 36, 40, 46, 52, 55, 78]. Both AFL and libFuzzer were
viable choices. While both Fuzzers can fulfil the same tasks,
we think that both have strengths and weaknesses for specific
situations. To fuzz with libFuzzer a specific function is picked
as an entry point. In contrast AFL primarily fuzzes code by
using the executable of the target program. In the hard task, it
is unrealistic that the code section containing the bug can be
reached by AFL this way, while libFuzzer can be run directly
on the function. For this reason, we choose libFuzzer over
AFL.

3.2 Task Selection
To evaluate the usability of the tools, we needed programs
containing vulnerabilities that participants should find. While
we were also interested in comparing the usability of the
Clang Static Analyzer and libFuzzer, it was not feasible to use
the same vulnerabilities for both tools since the types of bugs
these tools are good at finding vary too much. We were also
interested in comparing how the tools performed at different
levels of difficulty. We chose one easy task per tool to get a
baseline. With that, we could uncover fundamental difficulties
with the tool itself. Additionally, a hard task was chosen per
tool to see how it performed in a more realistic setting.

Prerequisites

An appropriate task, i.e. a program to be analyzed, needs to
contain a vulnerability that the respective analysis tool can

find. This bug should be hard to find by other means than
using the tool, particularly by using search engines, thus data-
sets like the DARPA Cyber Grand Challenge [11] were not
viable options for us. We also decided against using tools
like Lava-M [39] since they generate a recognizable style
of bugs that we knew were familiar to the CTF participants,
and inserting bugs into existing programs opens up the risk
that participants could use the DIFF tool to identify changes
quickly. Ideally, we could use actual undiscovered bugs. To
make the matter more complicated, it was also desirable that
the difficulty of the two easy and two hard tasks would be
similar.

Static Task

We started by running the Clang Static Analyzer on several
trending GitHub projects at that time. A list can be found in
the Appendix in Table 5. While most of the projects had a
high number of warnings, we could not find any true positives,
despite investing a significant amount of effort into this. Since
this proved fruitless, we contacted experts in static analysis
from the Cyber Analysis and Defense and the Cyber Security
research departments of the Fraunhofer FKIE to discuss pro-
gram selection. They did not have any fixed but unpublished
bugs, so we were unable to find an unpublished bug suitable
for our study. Thus, we fell back on inserting vulnerabilities
ourselves but attempting to mitigate the issues mentioned
above. For this, we injected one bug in a local copy of the
open-source project jq [15] for the easy task and two bugs
into a local copy of the open-source project Tesseract [23]
for the hard task. The injected bugs were never deployed
anywhere outside the study and did not endanger anybody.
We chose these projects based on the number of warnings
since related work showed that the number of false positives
is the main usability issue of static analyzers. Project jq only
produced five warnings, and we checked all to confirm they
were false positives. Tesseract produced 476 warnings, and
we did not find any true positives. We chose to inject one
bug, which the Clang Static Analyzer can find without any
options activated in both programs. We also injected an addi-
tional bug in the hard task, which requires the tester to set the
checker alpha.security.ArrayBoundV2 manually to inspect
array boundaries. To mitigate the risk of participants using
DIFF to find the inserted bug, we chose older versions of the
programs and removed all information concerning the version
number. A detailed description of the bugs can be found in
the companion document.

Dynamic Task

Unlike with the Clang Static Analyzer, there was no simple
way with libFuzzer to evaluate a set of GitHub-projects simi-
larly, so we contacted Code Intelligence a company offering
fuzzing as a service to get an overview of difficulty levels of

USENIX Association Seventeenth Symposium on Usable Privacy and Security 555

different projects. Fortunately, they knew a couple of open-
source projects with vulnerabilities that had already been
reported and fixes submitted but not publicly announced yet.
Hence, we selected two of these for our fuzzing tasks. For the
easy task, we used yaml-cpp [24] since it is a comparatively
small project and has only a handful of public interfaces. This
circumstance makes it reasonably easy to get a good overview
of the program in a moderate amount of time. Also, writing
the fuzz target is relatively simple, and the bug is found in a
couple of seconds, even without instrumentation. We knew of
one bug in yaml-cpp.

For the hard task, we selected the Suricata [22] project.
The fuzz target needed to trigger the bug is more complex
than for the yaml-cpp project, and instrumentation, a fitting
corpus, and time is needed. Based on the fuzzing expert’s
recommendations, we opted to give a starting hint to give
participants an idea of where they should start looking since
the code base was huge, and it would take more time than was
available in the study to get an overview. We knew of two bugs
in the location where we gave a hint. We fixed one of them
since it was a very easy bug, and this was supposed to be the
hard task. There were also two other bugs in a different code
section. However these were not relevant to our study. So for
the purpose of this study, we had one bug in the location for
which we gave the hint. In addition to our hint, the Suricata
project contained two other sources participants might use to
guide their fuzzing effort. The project contained unit tests that
could be adapted into fuzz targets. The projects also contained
some AFL fuzz targets. As far as we could tell, it was not
possible to trigger the bugs with the AFL fuzz targets. Details
on the bugs can be found in the companion document.

3.3 Study Design CS Study

Our study contains two independent variables, each with two
levels: analyzer (Clang Static vs. libFuzzer) and difficulty
(easy vs. hard). Based on our external experts’ feedback and
internal pre-studies, we decided to allot ten hours for each
of the four study conditions. Since this study is highly skill-
dependent, we opted for a within-subjects study design for
the analyzer variable. To reduce the time needed per partici-
pant, we opted to study the difficulty level between-subjects,
which then gave us a mixed factorial study design. So each
participant either did the easy task with both the Clang Static
Analyzer and libFuzzer or did the hard task with both analyz-
ers. We randomly assigned the participants to the hard or easy
tasks and randomized the order in which participants used
the analyzers to counter learning and fatigue effects. Due to
the length of the tasks and the fact that fuzzers need to run
for a while to find bugs, we conducted the study online. Par-
ticipants had ten days per condition and were instructed to
work ten hours. If they thought they had found all bugs, they
could report in early and would then be given the second task.
Participants were asked to keep a diary while working on the

task detailing what they spent time on and what problems they
encountered. We supplied remote virtual machines with the
tools pre-installed for participants to use. They were, however,
also allowed to work on their machines if they preferred. After
completing both tasks, participants took part in a 30-minute
semi-structured interview.

Recruitment and Participants

Since our study required a time commitment of 20 hours,
recruiting enough professional developers was not feasible
for us at this stage of our research. Thus, we opted to use
CS students from a lecture on usable security and privacy
and CTF players to gain first insights but want to point out
that professional developers would probably perform better
in absolute numbers. However, fixing the usability problems
discovered by the CS students is likely also to be beneficial
to professional developers. However, we cannot make any
claims to the extent. Additionally, CS students are also a
legitimate user group for these tools, and consequently, fixing
usability issues for them is also a desirable goal.

The lecture is part of a master of computer science cur-
riculum and is not mandatory. The focus of the lecture is
usability in the context of security. Consequently, all partici-
pants had a bachelor degree in computer science, had some
basic knowledge on how to evaluate the usability of security
tools.

Since the tasks require C/C++ and Linux skills, we used a
pre-questionnaire as a filter. We selected a self-reported skill
level for Linux and C/C++ of four or higher on a scale of
one to seven. We distributed the pre-questionnaire to about
110 students and selected 32 for the study who fulfilled the
requirements. They were compensated with an 11% bonus for
their end-of-term exam. Students not selected for this study
had other opportunities to earn the same bonus. Table 13
of the Appendix shows the demographics of the CS student
participants.

Only six out of the 32 participants reported that they have
ever used a static code analyzer before. 17 participants, re-
ported that they were familiar with the term fuzzing. However,
only four of them had used a fuzzer before. Three of the par-
ticipants had found a bug with a fuzzer, and one had used the
fuzzer libFuzzer before.

3.4 Study Design CTF Study

The second study conducted with CTF players was designed
and run after the results of the first study with CS students
had been evaluated. While the studies are very similar, we did
make three changes which we will highlight here.

Firstly, based on the results of the CS study and the ex-
pected skill level of the CTF players, we dropped the easy
tasks since we did not expect to learn much there and focused
on the hard task.

556 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Secondly, the Suricata project released an update fixing two
of the three bugs we knew of, and information about them had
been released. To prevent participants from quickly finding
these two bugs via a web-search, we gave our participants the
updated version, which thus only contained one bug we knew
of for them to find. Fortunately, this bug was the one in the
code section for which we gave a hint so we could leave the
task unchanged except for the update.

Finally, since exam bonus points were not an option, we
offered monetary compensation instead. We initially offered
a base compensation of 70 euro, with an additional 70 euro
offered for finding bugs. We thought due to the competitive
nature of CTF players, they would respond well to the incen-
tive. However, we were not able to gain enough interest in
our study. After talking to some potential participants, we
switched to a flat compensation of 140 euro independent of
success.

Recruitment and Participants

We recruited participants from a local Capture-the-Flag (CTF)
team via announcements in the weekly team meetings and
email. This pool contains roughly 80 people, of which 16
filled out the pre-screening survey. We removed participants
who did not have at least one year of CTF experience and
had taken part in at least one online and one in-person CTF
challenge since we wanted to have a highly skilled group
for comparison with the CS students. This left us with eight
participants who took part in the main study. During the
study, it turned out that two participants had misunderstood
the question about in-person CTF events. They actually had
not taken part in any and thus are not included in this report.

The demographics of the CTF group are shown in Table 14
in the Appendix. Compared to the CS group, the CTF group is
younger, more male and the education level is slightly lower.

Similar to the CS group, only two of the six participants
had used a static code analysis tool.

However, all participants reported that they were famil-
iar with the term fuzzing. Five of them had already used a
fuzzer before, and three of those five participants had also
used libFuzzer and half of all participants reported that they
had already found at least one bug with a fuzzer.

This indicates that the CS and CTF group were on a similar
level w.r.t. static code analysis tools, but the CTF group had
more experience with fuzzing.

3.5 Scoring Results

We evaluated the analyzers based on the success or failure
of the participants to get the tool up and running as well
as finding the bug. These are separate since it is possible to
correctly use the tool but still fail to find the bugs. To make our
assessment, we analyzed the submissions of the participants

(code and bug reports) as well the content of the diary and the
exit interview.

In the static analysis case, a participant successfully ful-
filled a static task if the participant used the Clang Static
Analyzer correctly and found at least one of the bugs we
inserted.1

A participant successfully fulfilled a dynamic task if the
participant triggered the bug present in the code by using
libFuzzer and recognized it as a bug.

4 Limitations

Our studies have the following limitations:
Task Selection. The most considerable limitation concerns

the task selection. While we did our best to find fair easy and
hard tasks for both tools and consulted external experts, we
cannot guarantee that the two easy and hard tasks are exactly
the same level of difficulty. While the identified problems
likely remain for other tasks, the difference between the two
approaches could vary for different tasks.

Participants. We sampled participants from a master course
in usable security and a CTF team. Thus this sample is not
representative of the wider world. Nonetheless, fixing the
issues we found is most likely a good idea, even if more
experienced developers might have learnt to overcome them.

Tools Selection. We tested two specific tools: Clang Static
Analyzer and libFuzzer. Other tools might perform differently.

Time. Participants only had ten hours per task. While our
internal testing suggested that this would be sufficient, some
CTF participants would likely have found the bug with lib-
Fuzzer, since they were making progress until the end. The
time limit did not seem to affect the CS participants or the
static tasks.

Unknown Code. Our evaluation only looks at participants
analyzing code that they did not write themselves. Further
studies with code known to the participants are needed to
make claims about this scenario.

Incentives. When comparing the CS and CTF group, the
different incentives must be taken into account.

Bugs. During the second study with the CTF participants,
information about the bugs in Suricata was published in a
blog. One of our participants found this blog and informed
us about it. We contacted the author of the blog, and they
kindly agreed to take if offline until the end of the study.
The participant who informed us about the blog had already
finished the task. We asked all other participants whether
they had come across the blog or other information online.
One additional participant had found some information in an
online presentation; however, this did not help them complete
the task.

1Another true positive bug would also have counted, but this did not
occur.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 557

5 Ethics

Our studies were reviewed and approved by the Research
Ethics Board of our university.

Our studies also complied with the General Data Protection
Regulations. Since we were working with live vulnerabilities,
responsible disclosure guidelines were followed. The devel-
opers of both programs were already aware of the Bugs, and
all participants agreed to comply with responsible disclosure
in case they found bugs.

6 CS Study Results

We label participants based on their group (CS or CTF), the
order of assignment to the conditions ((FS: fuzzing then static,
SF: static then fuzzing) and the difficulty of their tasks(E: easy,
H: hard). For the analyses, we used the pre-questionnaire,
the reports submitted by the participants, the diaries and the
semi-structured post-interview. The questions of the interview
and the pre-questionnaire can be found in Appendix A.1 and
in the companion document. Except for CS16-FSE, every
participant consented to the interview being recorded and
transcribed. For the interview of CS16-FSE handwritten notes
were taken. The interviews were transcribed and anonymized.

To analyze the interviews and diaries, we used inductive
coding [75] with two researchers. The two researchers started
with coding the same four randomly chosen interviews in-
dependently and in parallel. They compared, analyzed and
discussed the two resulting coding sets. It turned out that due
to the open approach, the code sets of both researchers were
substantially different. Through a discussion of the codes a
common coding set was agreed upon. The four interviews
were then recoded and discussed again. This procedure was
repeated in steps of three interviews. The diaries of the par-
ticipants were coded with the resulting coding-set from the
coding of the interviews. During the coding of the diaries, the
coding-set was again supplemented by codes that emerged
from the data. All quotes from the participants were translated
from German into English by the authors. The final coding
set can be found in the companion document.

6.1 Drop-outs
Of the 32 CS student participants, only 18 started the second
task, and only ten finished both tasks and were interviewed.
CS18-FSH finished both tasks and took part in the interview,
but we decided to remove them from our analysis because it
became clear that they had not put any real effort into either
task. This leaves us with nine participants that finished both
tasks and were interviewed. The drop-out rates were much
higher than we expected. We have conducted many usability
studies with CS students, and it is normal that some drop-out,
but this drop-out rate is noteworthy. While we did not conduct
formal interviews with the drop-outs, we spoke to some of

them. They told us that the tasks were too hard and that they
did not know how to solve them and thus dropped out.

The second column of Table 1 shows the drop-out rates,
and, as can be seen, only a quarter of the participants dropped
out of the easy static task, while half dropped out of the hard
static task. With the fuzzing tasks half dropped out both in
the easy and hard tasks. This is a first indication that there are
usability issues with both approaches. While this explanation
seems plausible, based on the rest of the data we could gather,
it is also possible that the drop-out rate could be an artefact
of our study design. Further studies with different designs are
needed to confirm this.

Since we were also interested in a qualitative within-
subjects comparison of the Clang Static Analyzer and lib-
Fuzzer, most of our analysis focuses on the nine CS partici-
pants who completed both tasks and who were interviewed.
Table 11 shows an overview of the participants’ positive and
negative comments and their preference for the two tools. In
the following we look at the results in more detail.

6.2 Static Task

The results of the static analysis tasks can be seen in Table 1.
Table 6 in the appendix breaks the results down into those who
were assigned the conditions as their first or second task. As
can be seen, the easy task was indeed relatively easy with only
three participants aborting the task. Moreover, in eight out
of nine submissions in the easy tasks, the bug was correctly
identified. In contrast to that, half the participants dropped out
of the hard task. Of those who submitted a report for the hard
task, none had found either of the two bugs. In the following,
we will group our insights by the different steps needed to
complete the task. Readers unfamiliar with this topic can find
additional information in the companion document.

Step1: Build Target Program with Clang Static Analyzer
None of the participants reported that they used any other
source of information besides the documentation of the Clang
Static Analyzer and the target program(TPr).

Not many participants had problems with this step, except
for two participants, CS31-SFE and CS24-FSE. Both had used
the configure and make commands on the project to check if
everything worked as intended. This interfered with the Clang
Static Analyzer because the target program was already built.
Therefore the analyzer could not build the target program
again and consequently could not find any bugs. CS24-FSE
solved this problem on their own. CS31-SFE submitted a
report stating that no bugs were found. To gather more infor-
mation, we let CS31-SFE know that something went wrong
and gave a hint. CS31-SFE still counts as a fail in the overall
statistics, but with the hint were able to complete this step and
their results are considered in the following steps.

558 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Step 2: View the Output Five out of the nine participants
who submitted a report had trouble viewing the output of the
Clang Static Analyzer. However, this problem only arose be-
cause the participants were working on the remote machines
offered by us. Except for CS31-SFE, all participants solved
the issue by downloading the output to their local machines.
Since this problem stemmed from our study setup, we do not
see this as a usability issue of the tool.

Step 3: Analyze Reports The presentation of the output of
Clang Static Analyzer was rated very positively by the par-
ticipants. However, as expected, all participants in the hard
task and some in the easy task stated that the massive num-
ber of warnings was a substantial problem. In particular, the
high number of duplicate bug reports was viewed negatively.
This is in line with previous work looking at static analyzers.
What is noteworthy though is, that this problem has been well
known for over a decade but is still an issue with current tools.

6.3 Dynamic Task

The results of the dynamic analysis tasks in Table 1 show
that both tasks were hard to solve for our CS participants. For
a more detailed overview showing in which order the tasks
were assigned, please refer to Table 9 in the Appendix.

Only two CS participants were able to solve the easy task.
CS6-FSE dropped out in the following static task, but their
diary showed that they straightforwardly solved the task men-
tioning no problems. The other participant was CS23-SFE,
who had stated that they already had experience with fuzzing
and libFuzzer in particular. Another participant, CS5-SFE,
wrote the correct fuzz target and ran the fuzzer triggering the
bug but was convinced that the fuzzing report did not describe
a bug.

None of the participants was able to solve the hard task.
The drop-out rates for both fuzzing tasks was roughly half,
just like for the hard static task.

Unlike with the Clang Static Analyzer, which almost all
participants used correctly, we found many problems with
the usage of libFuzzer. Table 2 gives an overview of where
participants had problems. The columns of Table 2 depict
the six steps of the fuzzing process. The first step of find-
ing a suitable function to fuzz contains two values. The first
value is the number of functions a participant tried to fuzz.
The second value indicates if the participant found a function
that triggers one of the bugs known to us. The step of build-
ing and instrumenting the target program also contains two
values. The first value indicates whether the target program
was built, the second if the target program was instrumented.
The other columns indicate: how many fuzz targets were cre-
ated, whether they could build the fuzz targets, whether they
ran the fuzzer, triggered the bug, interpreted the output cor-
rectly (either as false or true positives), used a corpus and

used toy examples to try out fuzzing before trying it on the
main project.

The first nine participants in the table are those who com-
pleted all tasks and the interview. The next participant in blue
is the low effort participant. The participants below in grey
completed the fuzzing task but then dropped out. Since we
conducted the study online, and participants were allowed to
use their own computers, we could not always reconstruct ev-
ery step. When we were uncertain about whether a participant
successfully took a step or not, we marked this with a circle.

For our qualitative analysis, we again focus on the partic-
ipants that finished both tasks and were interviewed. In the
following, we will group our insights by the separate steps
needed to complete the task. Readers unfamiliar with these
steps can find additional information in the companion docu-
ment.

Familiarization with the Process All participants started
with getting an overview of libFuzzer as well as the target
program. Unlike the Clang Static Analyzer, where partici-
pants only used the official documentation, many participants
searched for additional information about libFuzzer on the
web. This highlights deficits in the official documentation as
emphasized by CS5-SFE:

So if you visit the [libFuzzer] page, it is not really
obvious what you need to do.

and by CS15-SFE:

I have not used a fuzzer and I would have wished
for a guideline. Such as: Step one, do this, step two,
do this... getting started was really hard.

Moreover, participant CS15-SFE stated that the documen-
tation negatively impacted them:

Even after reading through the paragraphs several
times, i‘m not sure where to start. Instantly start to
losing interest.

Step 1: Find a Suitable Function to Fuzz In the easy task,
all participants who identified any functions to fuzz also iden-
tified the one that could trigger the bug. Three participants,
CS16-FSE, CS31-SFE and CS4-FSH, did not find any func-
tions they thought they could fuzz. CS4-FSH summarized the
problems with:

I looked at the source code of Suricata and was
completely overwhelmed. [...] And in the end I did
not find any approach how I could fuzz this with a
fuzzer.

CS31-SFE commented on that:

I had problems finding the right point to start
fuzzing. The website was not much of a help: [...].

USENIX Association Seventeenth Symposium on Usable Privacy and Security 559

combined started drop-out submitted success

Static-easy 12 3 9 8
Static-hard 10 5 5 0

Fuzzing-easy 16 8 8 2
Fuzzing-hard 10 6 4 0

Table 1: CS static analysis and fuzzing overview

Participant Condition Found Func. Wrote FT Build & Inst. TPr Build FT Ran Fuzzer Bug Trig. Interp. Output Corpus Toy

CS16-FSE easy 7 / 7 7
CS31-FSE easy 7 / 7 3
CS15-SFE easy 2 / 3 2 7 / 7 (FT in TPr) 7 7
CS24-FSE easy 1 / 3 1 3 / 7 7 3
CS5-SFE easy 1 / 3 1 3 / 7 3 3 3 7 3 7

CS23-SFE easy 1 / 3 1 3 / 3 3 3 3 3 3 7

CS4-FSH hard 7 / 7 3
CS3-SFH hard m / m m 7 / 7 7 3
CS8-FSH hard 1 / 7 m 7 / 7 3

CS18-FSH hard 7 / 7 7

CS28-FSE easy 7 / 7
CS6-FSE easy 2 / 3 2 3 / 7 3 3 3 3 7 7

CS17-SFH hard 7 / 7 7
CS30-FSH hard 7 / 7 7 / m
CS26-FSH hard m / m m m / m 3

Table 2: CS dynamic analysis deeper statistics: 3 denotes success in this phase, 7 failure and m undecidable

Should I try to look at it from an external view and
try to feed information from the outside or should I
do it internally [...]? I was missing many examples.
It would have been good to not only see somebody
fuzzing an easy function [...].

Step 2: Write a Fuzz Target All participants in the easy
task who found the function to fuzz also successfully wrote
the correct fuzz target. None of the CS participants managed
to write a correct fuzz target in the hard task.

Two participants, CS15-SFE and CS3-SFH, tried to write
the fuzz target in an existing file of the target program. CS3-
SFH changed their mind after having problems with the com-
pilation and used an external fuzz target. For CS15-SFE, this
resulted in a more complicated situation. They had to remove
the corresponding main function of the target program to use
libFuzzer since libFuzzer is shipped with a main function,
which interferes with other main functions. More importantly,
they also had to modify the make file in order to compile the
altered target program. This seemed to have been motivated
by the code snipped in the official documentation that could
give the impression that the fuzz target is part of the target
program. CS3-SFH also stated to this topic:

I tried to write a simple fuzzer target for a function

in app-layer-parser. I started simple and did not
manipulate the inputs. I directly wrote it into the
app-layer-parser.c file like in the examples given...

CS3-SFH did not include the fuzz target in the report, so we
could not confirm this.

While this is a legitimate way to run libFuzzer, in our view
writing the fuzz target in a separate file is a cleaner and more
straightforward approach.

Step 3: Compile and Instrument Target Program In the
case of the easy task, none of the CS participants, except
CS23-SFE, seemed to be aware that instrumentation exists, or
had any idea why instrumentation is useful. CS23-SFE was
the only participant who actively dealt with instrumentation
and was aware of the implications of the "fuzzer-no-link"-flag
and was the only ever to use it.

All participants of the hard task had the problem that Suri-
cata builds as an executable, and libFuzzer can not directly
fuzz executables. None of them was able to find a solution for
this, as depicted in the companion document. CS8-FSH tried
to find a solution by exporting a function from the Suricata
elf binary into a shared object and then load and run it within
a fuzz target. However, they were not able to do so.

560 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Step 4: Build Fuzz Target The five remaining participants
reported severe problems in the building and linking step.
CS24-FSE stated:

I believe that the library itself wasn’t the problem,
but the stupefying linking and compiling was.

The problems with building and linking could have a variety
of reasons. Two participants stated that they lacked knowledge
concerning the make system (CS24-FSE, CS15-SFE) or even
compiling C/C++ code in general (CS5-SFE). Other partici-
pants had problems linking libraries and were randomly trying
out compiler and linker flags to get the fuzz target to compile.
For yaml-cpp, some participants also tried to use make install
on the target program to increase the chance of hitting the
right combination of compiler and linker flags. Overall, we
observed a lack of understanding concerning the interaction
between fuzz target, target program and compilation process.

Step 5: Run and Observe the Fuzzer In the easy task CS5-
SFE, CS6-FSE and CS23-SFE were able to build the fuzz
target and run libFuzzer. Moreover, they all triggered the bug
because in the easy task the bug was triggered within seconds.

Step 6: Interpret Output Of the three participants who
triggered the bug, CS5-SFE incorrectly classified the output
as a false positive. CS5-SFE saw the out of memory error and
the malformed input the fuzzer had generated but thought this
was a mistake by libFuzzer instead of a bug in the program.

Even though CS23-SFE was by far the best participant
solving the easy fuzzing task in less than two hours, they did
not find the output of libFuzzer very helpful, stating:

I would be helpful if the output did not just contain
the input which led to the bug, but also information
about the crash.

Toy Examples and Documentation Six of the nine partic-
ipants experimented with the toy examples from the docu-
mentation to get to know libFuzzer. However, as described
above, this led some astray.

7 CTF Study Results

The interviews and diaries of the CTF group were coded
based on the same principles we used for the CS group. The
questions of the interview and the pre-questionnaire can be
found in the Appendix A.2 and in the companion document.

An overview of the CTF-group’s success can be seen in Ta-
ble 3. Unlike in the CS group, we had no drop-outs in the CTF
group. There are two potential explanations for this. Based
on our interviews, the CTF participants were not as frustrated
with the tools as the CS participants or had a higher frustra-
tion threshold and a willingness to work with complicated and

puzzling systems. However, it could also be that the 140 euro
incentive was more motivating than the 11% exam bonus or a
combination of these factors. As in the previous section, we
will structure our results around the steps needed to operate
tools.

Static Analysis

Steps 1 & 2 The participants had no problems getting to the
point where they had to inspect the reports given by the Clang
Static Analyzer. Some participants reported issues viewing
the results, like in the CS study, but could quickly solve them.

Step 3: Analyze Reports Overall, participants were satis-
fied with the usability of the tool as with the presentation of
the output but had the same problem with the high number of
false positives as the CS group. CTF7-SF stated:

More than once I wondered whether it‘s me or the
analyzer who doesn‘t understand the code.

Only one participant (CTF2-FS) was able to find one of the
bugs.

Notably, four out of six participants reported that they heav-
ily prioritized reports in the category memory errors. Some
specifically mentioned that they neglected reports in other
categories, such as Logic errors, which was the category
where the Bug was. Their reasoning was that these kinds
of bugs potentially have low exploitability. In the interviews,
some of the CTF participants stated that they did not consider
availability/denial-of-service an issue in this context. This
could be an artefact of the fact that in CTF games denial-of-
service attacks are often forbidden. CTF7-SF stated:

Going through the "Memory error" bugs - If there
are any vulnerabilities I expected to find them here,
so I took some time for them.

All in all, participants showed strong tendencies to focus
on bug types, ignoring much of the output produced by the
Clang Static Analyzer. CTF3-SF summarized it as follows:

I filtered for use-after-free and double free/delete,
which seemed most likely to have immediate se-
curity impacts. While there were 72 bugs shown
in total, most of them were duplicates. I decided
to only look at one bug per bug group/function-
combination, which eliminates mostly very simi-
lar code paths... For each combination, I chose the
shortest path length to have a minimum-complexity
example of a triggering code path.

This filtering caused the participants to miss our bug, which
was in the category Dereference of undefined pointer value.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 561

combined started dropout submitted success

Static-hard 6 0 6 1
Fuzzing-hard 6 0 6 0

Table 3: CTF: overall results

Dynamic Analysis

Despite being more experienced and security savvy, our CTF
participants also had trouble with libFuzzer. Table 4 gives an
overview of where participants had problems.

Step 1: Find a Suitable Function to Fuzz Unlike the CS
participants, all CTF participants were able to identify the
correct function to fuzz.

Step 2: Write Fuzz Target The writing of the fuzz target
split the CTF group in two. Participants CTF4-FS and CTF5-
SF used the unit tests as the basis for their fuzz targets. Par-
ticipants CTF2-FS, CTF3-SF, CTF6-FS and CTF7-SF based
their fuzz target on the AFL targets contained in the project.
In general, all participants agreed that creating the fuzz target
was a complicated and time-consuming task.

Step 3 & 4: Compilation and Instrumentation Five out
of six participants were successful in compiling and instru-
menting all necessary parts, only CTF5-SF did not success-
fully manage this step. CTF5-SF had criticism for the docu-
mentation and some suggestions on how the usability of these
steps could be improved.

Although everything was described [in the exam-
ple] instructions were missing how to approach
fuzzing a real-world project, how to integrate it into
an existing boot-system. Maybe one could have
made something generic to integrate it into Cmake
or Auto-build.

Four of the five participants who created a fuzz target wrote
the fuzz target directly into the target program. Unlike the CS
participants, they were able to make the necessary modifica-
tion to make this work. We found this interesting since it does
not seem to be the intuitive way for us.

Step 5: Running and Observing the Fuzzer The four
remaining participants, CTF2-FS, CTF3-SF, CTF6-FS and
CTF7-SF, created multiple fuzz targets and observed the
fuzzing process.

All participants focused on using the executions per second
as well as the code coverage as the indicators on whether the
fuzzing process was going well or not. Concerning the code

coverage, some participants mentioned that it could some-
times be hard to interpret the relative magnitude of the given
value correctly. CTF6-FS summarized it as follows:

Of course this depends on the complexity [of the
TPr], but when I have such a HTTP fuzzer, and
I know it is implemented in C, and I only have
twenty branches or so which have been covered,
then I know: This can’t be. This absolutely can’t
be! You can’t implement a HTTP fuzzer with so
few branches or so few basic blocks. And if it also
isn’t making progress, then, you need to find out
what is the matter.

The problem of knowing whether libFuzzer covered the neces-
sary parts of the code was a frequently reoccurring statement.
Only CTF2-FS used the visualizer of LLVM to get a better
understanding of the situation.

Step 6: Interpret the Output CTF4-FS wrote a fuzz target
and was also able to build it. However, the fuzz target quality
was relatively low, so that the fuzz target crashed directly
due to problems during initialization when executed. The
participant was aware of the problem but could not fix it.
CTF4-FS stated:

And when I wanted to fuzz the correct filter, I al-
ways failed because something was uninitialized
and this was why it always crashed. So it always
fuzzed but crashed in each attempt.

Unsurprisingly, CTF4-FS believed that fuzz target creation
was a big problem. They reasoned that this might partially be
because they did not know the code.

It was probably because I didn’t know the software
at all and then I couldn’t proceed as well as I hoped

All of the four remaining participants were able to inter-
pret the output of libFuzzer. Depending on the situation, they
handled the corresponding situation differently.

CTF2-FS and CTF3-SF had problems with memory leaks
due to how they implemented the fuzz targets. They were
able to fix the problems and re-ran the fuzz target without the
memory leak.

CTF7-SF wrote at least ten fuzz targets and ran them. Their
fuzz target for the smb protocol crashed for every input. They
decided that the fuzz target was flawed and just ignored it

562 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Participant Found Func. Wrote FT Build & Inst. TPr Build FT Ran Fuzzer Bug Trig. Interp. Output Corpus Toy

CTF5-SF 1 / 3 1 7 / 7 7 7
CTF4-FS 1 / 3 1 3 / 3 (FT in TPr) m m 7 3 7
CTF2-FS 1 / 3 1 3 / 3 (FT in TPr) 3 3 7 3 3 7
CTF6-FS 1 / 3 10 3 / 3 (FT in TPr) 3 3 7 m 7 7
CTF7-SF 1 / 3 11 3 / 3 3 3 7 3 3 7
CTF3-SF 1 / 3 3+ 3 / 3 (FT in TPr) 3 3 7 3 3 7

Table 4: CTF dynamic analysis deeper statistics: 3 denotes success in this phase, 7 failure and m undecidable

because they had several other fuzz targets that were up and
running.

CTF7-SF’s fuzz target for the dnp3 protocol also produced
many errors, but again they understood that this was due to
a flawed fuzz target and not because of actual bugs. They
attributed the flaws initialization problems and did not fix
them for the same reason as before. CTF2-FS and CTF3-SF
also had problems with initialization, but both fixed the issues
to make the fuzz target work.

None of the four participants found a bug. However, all four
were using libFuzzer correctly, and with more time available,
it seems likely that they would have found the bug in the target
program. While our pre-testing suggested that ten hours was
enough time, future iterations of this kind of study should plan
more time for this kind of task. Nonetheless, we are confident
that they would be capable of finding these kinds of bugs
with libFuzzer in the wild with the skill they already possess.
However, the effort and skill required are quite substantial. In
contrast, we do not believe that our CS would be able to use
libFuzzer without investing significant effort in learning how
to use the tool.

Expanding the Search As the participants did not en-
counter any true crashes, they felt the need of exploring further
options. Most of them did this by manually targeting specific
parts of the code. Still not encountering any crashes, they
tried to optimize the fuzz targets and tried to develop more
complex inputs to the functions. In the interviews participants
CTF6-FS and CTF3-SF phrased this as a feature request.

Consequently, stateful fuzzing was needed. CTF3-SF con-
sidered to implement stateful fuzzing but was not able to do
it in the given time. CTF6-FS implemented a minimal form
of stateful fuzzing. However, they were not very enthusiastic
about it:

Libfuzzer does not support stateful fuzzing, there-
fore no high expectations as path stability will be
horrible.

Corpus and Dictionary Except for CTF2-FS, all partici-
pants used corpora for their respective fuzz targets. Interest-
ingly, CTF6-FS used both a corpus and a dictionary. CTF6-
FS observed their fuzz targets with a corpus and a dictio-

nary included and noticed a drop in performance because the
coverage was lower than without the corpus and dictionary.
Consequently, they proceeded without either.

8 Discussion

8.1 Clang Static Analyzer
The Clang Static Analyzer enabled even inexperienced users
to check the target project for potential security issues. With
the Clang Static Analyzer, both our participant groups were
able to start the process reasonably easily and quickly. The
usability of the tool was consequently viewed fairly positively.
Our participants intuitively used Nielsen’s view on usabil-
ity [59], which separates usability and utility. In the hard task,
the high number of false-positive warnings was seen nega-
tively by both the CS and CTF groups, but this did not affect
their perception of ”usability“. The CTF participants also had
a negative view of the usefulness in general. They did not
think the tool was helpful when looking for vulnerabilities.
Consequently, they saw the tools as having good usability
but bad utility. It is worth noting though, that under the ISO
9241 [45] definition of usability, the bad effectiveness and
efficiency measured against the capability of finding true bugs
would lead the Clang Static Analyzer to receive a bad usability
evaluation.

Thus, the holy grail of static analysis continues to be the
reduction of the number of false positives.This would improve
the utility under Nielsen or usability under ISO 9241 and
enable users to effectively and efficiently find bugs.

8.2 libFuzzer
In stark contrast to the Clang Static Analyzer, where partici-
pants only struggled in the very last step, we found no step
in the libFuzzer process that did not cause our participants
severe problems. Our CS participants struggled even with the
easy fuzzing task showing that the usability of libFuzzer is
not at a comparable level to the Clang Static Analyzer. Even
our skilled CTF players found many aspects vexing, unnec-
essarily complicated and burdensome. However, in theory,
the utility of libFuzzer is good. Consequently, we see a lot of
potential if the usability can be improved.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 563

Based on our observations, our recommendations for lib-
Fuzzer are:

• Assist users in finding suitable functions to fuzz It
would be useful if libFuzzer assisted users in identifying
functions worth fuzzing quickly. This was not an issue
for our CTF participants, but if libFuzzer is to see the
same level of adoption as static analysis, it needs to be
usable by non-experts as well.

• Fuzz-target creation This is one of the most important
points. It takes a lot of expertise to write anything but
the most trivial fuzz targets for libFuzzer. In the case of
Suricata, participants actually wrote multiple fuzz targets
for the same function to account for the different parsers.
Either assisting in creating fuzz targets or making the
coverage guided self-exploration of libFuzzer more in-
telligent would be a great benefit. It is essential for less
experienced users, but it would also save time and effort
for users like our CTF players.

• Build automation The building and linking process cur-
rently also requires a lot of manual work for non-toy
projects, and it also requires a good understanding of
how the different components interweave. It would be
highly desirable to automate a lot of this, so users do not
need to understand, or know of, these issues.

• Opt-out sanitizers: Currently the use of sanitizers is
opt-in, i.e., the user has to integrate them actively. We
would recommend including many of these by default
and letting users opt out if necessary.

• Support automatic stateful fuzzing Many situations
require stateful fuzzing to achieve good performance. In
libFuzzer, this is a completely manual task, and some
of our CTF participants even wrote their own stateful
fuzzers to deal with the situation.

• Improve Code Coverage Our study shows that Code
coverage plays a major role in the usability of libFuzzer.
Even our CTF participants struggled to write fuzz targets
that covered all the code of just one target function. This
had to be done manually because libFuzzer is not yet
powerful enough to do this on its own in a reasonable
time. Potentially focusing on code coverage close to
fuzz targets would be a worthwhile endeavor to increase
usability.

• Better documentation Finally, while this is not particu-
larly glamorous and is a well-known problem in many ar-
eas, we saw a clear need for better documentation. There
is a clear difference between the Clang Static Analyzer
and the libFuzzer documentation despite both belonging
to the LLVM project. The current libFuzzer documenta-
tion led some of our participants astray. In particular, we
recommend creating more complex examples instead of
just using toy examples.

8.3 Comparison

Since we conducted a within-subjects study, we were also
interested in our participants’ comparative view of the two
tools. To support our impressions from the interviews and
diaries, we also analyzed the number of positive and negative
comments to get an overview of the disposition towards the
two tools.2

The majority of CS participants favored the Clang Static
Analyzer when answering the question of which tool they
would want to use in the future, including those faced with
over 500 warnings in the hard task. In contrast, the CTF par-
ticipants had a somewhat ambivalent relationship to the Clang
Static Analyzer. In principle, they described the usability pos-
itively and had fewer negative comments for the Clang Static
Analyzer than for the libFuzzer. However, they did not see the
Clang Static Analyzer as a serious contender to find vulner-
abilities. As a result, they stated that they favored libFuzzer
for future use and often stated that they would only use the
Clang Static Analyzer for fixing style issues.

That is because they saw far more potential for libFuzzer
than for the Clang Static Analyzer and thus would use lib-
Fuzzer. The corresponding Table 11 can be found in the Ap-
pendix.

So, in summary, our interpretation of the results suggests
that poor usability of libFuzzer and the good usability of the
Clang Static Analyzer led CS students to prefer it despite the
poor utility. However, the CTF participants acknowledged
the better usability of the Clang Static Analyzer but saw too
little utility to want to use it for their work in the future and
tolerating the poor usability of libFuzzer due to its better
perceived utility.

9 Conclusion and Future Work

In this paper, we presented the first qualitative studies examin-
ing the usability of libFuzzer and the Clang Static Analyzer. In
the context of our study design, we found that the Clang Static
Analyzer offers good usability but poor utility, while libFuzzer
offers poor usability but better utility. Since static analysis
and fuzzing find different kinds of bugs, ideally, they would
both be used in tandem. For this, the usability of libFuzzer
would need to be improved to lower the bar for entry. To aid
in this, we identified several usability issues in libFuzzer and
make suggestions for improvements.

Acknowledgments

The authors would like to thank Sirko Höer for helping with
the fuzzing task selection. This work was partially funded by
the ERC Grant 678341: Frontiers of Usable Security.

2The comment count does not necessarily reflect the weight of individual
issues but offers interesting insights nonetheless.

564 Seventeenth Symposium on Usable Privacy and Security USENIX Association

References

[1] Afl. https://github.com/google/AFL. Accessed:
02-13-21.

[2] Afl++. https://github.com/AFLplusplus/
AFLplusplus. Accessed: 02-13-21.

[3] Bugs found in chrome with fuzzing. https:
//bugs.chromium.org/p/chromium/issues/
list?can=1&q=label%3AClusterFuzz+-status%
3AWontFix%2CDuplicate&colspec=ID+Pri+M+
Stars+ReleaseBlock+Component+Status+Owner+
Summary+OS+Modified&x=m&y=releaseblock&
cells=ids. Accessed: 02-13-21.

[4] Checkmarx sast. https://
www.checkmarx.com/de/products/
static-application-security-testing. Ac-
cessed: 02-13-21.

[5] Checkmarx sast license agreement. https:
//checkmarx.atlassian.net/wiki/spaces/CCD/
pages/1253442222/CxIAST+End+User+License+
Agreement+EULA. Accessed: 02-13-21.

[6] Clang static analyzer. https://clang-analyzer.
llvm.org/. Accessed: 02-13-21.

[7] Codesonar sast. https://www.grammatech.com/
codesonar-cc. Accessed: 02-13-21.

[8] Codesonar sast license agreement. https:
//support.grammatech.com/documentation/
licenses/GrammaTech_License_Agreement_
CodeSonar_ver.2016.1.0.pdf. Accessed: 02-13-21.

[9] Coverity scan. https://scan.coverity.com/. Ac-
cessed: 02-13-21.

[10] Coverity scan license agree-
ment. https://www.synopsys.com/
company/legal/software-integrity/
coverity-product-license-agreement.html.
Accessed: 02-13-21.

[11] Darpa cyber grand challenge.
https://www.darpa.mil/program/cyber-grand-challenge.
Accessed: 02-13-21.

[12] Frama-c. https://frama-c.com/. Accessed: 02-13-
21.

[13] Gartner magic quadrant for application security test-
ing. https://www.gartner.com/en/documents/
3984345. Accessed: 02-23-21.

[14] Honggfuzz. https://github.com/google/
honggfuzz. Accessed: 02-13-21.

[15] Jq. https://github.com/stedolan/jq. Accessed:
02-13-21.

[16] libfuzzer. https://llvm.org/docs/LibFuzzer.
html. Accessed: 02-13-21.

[17] Microfocus-fortify. https://www.microfocus.com/
de-de/products/static-code-analysis-sast/
overview. Accessed: 02-13-21.

[18] Microfocus-fortify license agreement. https:
//www.microfocus.com/media/documentation/
micro_focus_end_user_license_agreement.pdf.
Accessed: 02-13-21.

[19] Mofuzz: A fuzzer suite for testing model-driven soft-
ware engineering tools.

[20] Oclint. http://oclint.org/. Accessed: 02-13-21.

[21] Radamsa. https://gitlab.com/akihe/radamsa.
Accessed: 02-13-21.

[22] Suricata. https://suricata-ids.org/. Accessed:
02-13-21.

[23] Tesseract ocr. https://github.com/
tesseract-ocr/tesseract. Accessed: 02-13-
21.

[24] yaml-cpp. https://github.com/jbeder/yaml-cpp.
Accessed: 02-13-21.

[25] Context is king: The developer perspective on the usage
of static analysis tools. 25th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineer-
ing, SANER 2018 - Proceedings, 2018-March:38–49,
2018.

[26] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. You get where you’re looking for: The
impact of information sources on code security. In 2016
IEEE Symposium on Security and Privacy (SP), pages
289–305, 2016.

[27] Y. Acar, S. Fahl, and M. L. Mazurek. You are not your
developer, either: A research agenda for usable security
and privacy research beyond end users. In 2016 IEEE
Cybersecurity Development (SecDev), pages 3–8, 2016.

[28] Andrei Arusoaie, Stefan Ciobaca, Vlad Craciun, Dragos
Gavrilut, and Dorel Lucanu. A comparison of open-
source static analysis tools for vulnerability detection
in C/C++ Code. Proceedings - 2017 19th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2017, pages 161–168,
2018.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 565

https://github.com/google/AFL
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://www.checkmarx.com/de/products/static-application-security-testing
https://www.checkmarx.com/de/products/static-application-security-testing
https://www.checkmarx.com/de/products/static-application-security-testing
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://www.grammatech.com/codesonar-cc
https://www.grammatech.com/codesonar-cc
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://scan.coverity.com/
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://frama-c.com/
https://www.gartner.com/en/documents/3984345
https://www.gartner.com/en/documents/3984345
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/stedolan/jq
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.microfocus.com/de-de/products/static-code-analysis-sast/overview
https://www.microfocus.com/de-de/products/static-code-analysis-sast/overview
https://www.microfocus.com/de-de/products/static-code-analysis-sast/overview
https://www.microfocus.com/media/documentation/micro_focus_end_user_license_agreement.pdf
https://www.microfocus.com/media/documentation/micro_focus_end_user_license_agreement.pdf
https://www.microfocus.com/media/documentation/micro_focus_end_user_license_agreement.pdf
http://oclint.org/
https://gitlab.com/akihe/radamsa
https://suricata-ids.org/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/jbeder/yaml-cpp

[29] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. Ijon: Exploring deep state spaces
via fuzzing. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 1597–1612. IEEE, 2020.

[30] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo
Ivančić, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. Fudge: Fuzz driver
generation at scale. ESEC/FSE 2019, page 975–985,
New York, NY, USA, 2019. Association for Computing
Machinery.

[31] William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. Hotfuzz: Discovering algorithmic
denial-of-service vulnerabilities through guided micro-
fuzzing. Proceedings 2020 Network and Distributed
System Security Symposium, 2020.

[32] Tegan Brennan, Seemanta Saha, and Tevfik Bultan.
Jvm fuzzing for jit-induced side-channel detection.
In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, page
1011–1023, New York, NY, USA, 2020. Association for
Computing Machinery.

[33] Alexandra Bugariu and Peter Müller. Automatically
testing string solvers. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
ICSE ’20, page 1459–1470, New York, NY, USA, 2020.
Association for Computing Machinery.

[34] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: Thread-aware grey-box fuzzing for effective
bug hunting in multithreaded programs. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2325–
2342. USENIX Association, August 2020.

[35] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Tao Wei, and Long Lu. SAVIOR:
towards bug-driven hybrid testing. In 2020 IEEE Sympo-
sium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020, pages 1580–1596. IEEE,
2020.

[36] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang,
Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su.
Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 1967–1983, Santa
Clara, CA, August 2019. USENIX Association.

[37] Maria Christakis and Christian Bird. What develop-
ers want and need from program analysis: an empirical

study. In David Lo, Sven Apel, and Sarfraz Khurshid, ed-
itors, Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE
2016, Singapore, September 3-7, 2016, pages 332–343.
ACM, 2016.

[38] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. Retrowrite: Statically instrumenting COTS
binaries for fuzzing and sanitization. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, May 18-21, 2020, pages 1497–1511.
IEEE, 2020.

[39] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. LAVA: Large-Scale Automated
Vulnerability Addition. Proceedings - 2016 IEEE Sym-
posium on Security and Privacy, SP 2016, pages 110–
121, 2016.

[40] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++ : Combining incremental steps of
fuzzing research. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT 20). USENIX Association,
August 2020.

[41] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2523–2540. USENIX
Association, August 2020.

[42] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
Data flow sensitive fuzzing. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2577–2594.
USENIX Association, August 2020.

[43] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik
Roychoudhury. Fuzz testing based data augmentation to
improve robustness of deep neural networks. In Proceed-
ings of the ACM/IEEE 42nd International Conference
on Software Engineering, ICSE ’20, page 1147–1158,
New York, NY, USA, 2020. Association for Computing
Machinery.

[44] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi,
and Charles Zhang. Pangolin: Incremental hybrid
fuzzing with polyhedral path abstraction. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, May 18-21, 2020, pages 1613–1627.
IEEE, 2020.

[45] Ergonomics of human-system interaction — Part 11:
Usability: Definitions and concepts. Standard, ISO/TC
159/SC 4 Ergonomics of human-system interaction,
March 2018.

566 Seventeenth Symposium on Usable Privacy and Security USENIX Association

[46] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and
Mathias Payer. Fuzzgen: Automatic fuzzer generation.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2271–2287. USENIX Association, August
2020.

[47] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Fuzzing error handling code using context-sensitive soft-
ware fault injection. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2595–2612. USENIX
Association, August 2020.

[48] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software developers
use static analysis tools to find bugs? Proceedings of the
2013 International Conference on Software Engineering,
pages 672–681, 2013.

[49] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:
hybrid fuzzing on the linux kernel. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[50] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel
Son. Montage: A neural network language model-
guided javascript engine fuzzer. In 29th USENIX Se-
curity Symposium (USENIX Security 20), pages 2613–
2630. USENIX Association, August 2020.

[51] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang,
Wei-Han Lee, Yueyao Chen, Chenyang Lyu, Chunming
Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, and Ting
Wang. Unifuzz: A holistic and pragmatic metrics-driven
platform for evaluating fuzzers, 2020.

[52] Daniel Liew, Cristian Cadar, Alastair F. Donaldson, and
J. Ryan Stinnett. Just fuzz it: Solving floating-point con-
straints using coverage-guided fuzzing. In Proceedings
of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019,
page 521–532, New York, NY, USA, 2019. Association
for Computing Machinery.

[53] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng,
Haifeng Ruan, and Jianwei Zhuge. FANS: Fuzzing
android native system services via automated interface
analysis. In 29th USENIX Security Symposium (USENIX
Security 20), pages 307–323. USENIX Association, Au-
gust 2020.

[54] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha.
Ankou: Guiding grey-box fuzzing towards combina-
torial difference. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineer-
ing, ICSE ’20, page 1024–1036, New York, NY, USA,
2020. Association for Computing Machinery.

[55] Valentin Manès, Marcel Boehme, and Sang Kil Cha.
Fse2020 - boosting fuzzer efficiency an information-
theoretic perspective, Jun 2020.

[56] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel von Zezschwitz, and Matthew Smith. "if you
want, i can store the encrypted password": A password-
storage field study with freelance developers. In Pro-
ceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, CHI ’19, page 1–12, New York,
NY, USA, 2019. Association for Computing Machinery.

[57] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, and Matthew Smith. Deception task design in de-
veloper password studies: Exploring a student sample.
In Fourteenth Symposium on Usable Privacy and Se-
curity (SOUPS 2018), pages 297–313, Baltimore, MD,
August 2018. USENIX Association.

[58] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and
Quang Tran Minh. Sfuzz: An efficient adaptive fuzzer
for solidity smart contracts. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, ICSE ’20, page 778–788, New York, NY,
USA, 2020. Association for Computing Machinery.

[59] Jakob Nielsen. Usability Engineering. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1994.

[60] Yannic Noller, Corina S. Păsăreanu, Marcel Böhme,
Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.
Hydiff: Hybrid differential software analysis. In Pro-
ceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, ICSE ’20, page
1273–1285, New York, NY, USA, 2020. Association
for Computing Machinery.

[61] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and
Christof Fetzer. Specfuzz: Bringing spectre-type vul-
nerabilities to the surface. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1481–1498.
USENIX Association, August 2020.

[62] Mitchell Olsthoorn, Arie van Deursen, and Annibale
Panichella. Generating highly-structured input data
by combining search-based testing and grammar-based
fuzzing.

[63] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. Parmesan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2289–2306. USENIX As-
sociation, August 2020.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 567

[64] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and
Taesoo Kim. Fuzzing javascript engines with aspect-
preserving mutation. In 2020 IEEE Symposium on Se-
curity and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, pages 1629–1642. IEEE, 2020.

[65] Hui Peng and Mathias Payer. Usbfuzz: A framework
for fuzzing USB drivers by device emulation. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 2559–2575. USENIX Association, August 2020.

[66] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,
and Suman Jana. Slowfuzz: Automated domain-
independent detection of algorithmic complexity vul-
nerabilities. CoRR, abs/1708.08437, 2017.

[67] Jan Ruge, Jiska Classen, Francesco Gringoli, and
Matthias Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In
Srdjan Capkun and Franziska Roesner, editors, 29th
USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 19–36. USENIX Association,
2020.

[68] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg,
and C. Winter. Tricorder: Building a program analysis
ecosystem. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages
598–608, 2015.

[69] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. HYPER-CUBE:
high-dimensional hypervisor fuzzing. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[70] Shinichi Shiraishi, Veena Mohan, and Hemalatha
Marimuthu. Test suites for benchmarks of static anal-
ysis tools. 2015 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSREW
2015, (November):12–15, 2016.

[71] Dag Sjøberg, Bente Anda, Erik Arisholm, Tore Dybå,
Magne Jørgensen, Amela Karahasanovic, Espen Koren,
and Marek Vokác. Conducting realistic experiments in
software engineering. pages 17 – 26, 02 2002.

[72] Justin Smith, Lisa Nguyen Quang Do, and Emerson
Murphy-Hill. Why can’t johnny fix vulnerabilities: A
usability evaluation of static analysis tools for security.
In Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020), pages 221–238. USENIX Association,
August 2020.

[73] Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bei-Tseng Chu, and Heather Richter. How developers

diagnose potential security vulnerabilities with a static
analysis tool. IEEE Transactions on Software Engineer-
ing, PP:1–1, 02 2018.

[74] Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bill Chu, and Heather Richter Lipford. Questions devel-
opers ask while diagnosing potential security vulnera-
bilities with static analysis. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2015, page 248–259, New York,
NY, USA, 2015. Association for Computing Machinery.

[75] David R. Thomas. A general inductive approach for
analyzing qualitative evaluation data. American Journal
of Evaluation, pages 237–246.

[76] Daniel Votipka, Michelle L Mazurek, Hongyi Hu, and
Bryan Eastes. Toward a Field Study on the Impact of
Hacking Competitions on Secure Development. 2018.

[77] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy
Hu, and Michelle Mazurek. Hackers vs. Testers: A
Comparison of Software Vulnerability Discovery Pro-
cesses. Proceedings - IEEE Symposium on Security and
Privacy, 2018-May:374–391, 2018.

[78] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang
Li, Yang Liu, Shengchao Qin, Hongxu Chen, and Yulei
Sui. Typestate-guided fuzzer for discovering use-after-
free vulnerabilities. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
ICSE ’20, page 999–1010, New York, NY, USA, 2020.
Association for Computing Machinery.

[79] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng,
Tiffany Bao, Dinghao Wu, and Purui Su. Not all cov-
erage measurements are equal: Fuzzing by coverage
accounting for input prioritization. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[80] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao
Qin, Yang Liu, Zhiwu Xu, Hongxu Chen, Xiaofei Xie,
Geguang Pu, and Ting Liu. Memlock: Memory us-
age guided fuzzing. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
ICSE ’20, page 765–777, New York, NY, USA, 2020.
Association for Computing Machinery.

[81] Valentin Wüstholz and Maria Christakis. Targeted grey-
box fuzzing with static lookahead analysis. In Proceed-
ings of the ACM/IEEE 42nd International Conference
on Software Engineering, ICSE ’20, page 789–800, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

568 Seventeenth Symposium on Usable Privacy and Security USENIX Association

[82] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data race fuzzing for kernel file sys-
tems. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020,
pages 1643–1660. IEEE, 2020.

[83] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-saving
greybox fuzzing as a variant of the adversarial multi-
armed bandit. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2307–2324. USENIX As-
sociation, August 2020.

[84] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Ro-
han Padhye, and Miryung Kim. Bigfuzz: Efficient fuzz
testing for data analytics using framework abstraction.
2020.

[85] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang,
Wenke Lee, and Dinghao Wu. Squirrel: Testing database
management systems with language validity and cover-
age feedback, 2020.

[86] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and
Yu Jiang. Zeror: Speed up fuzzing with coverage-
sensitive tracing and scheduling.

[87] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. Fuzzguard: Filtering out
unreachable inputs in directed grey-box fuzzing through
deep learning. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2255–2269. USENIX As-
sociation, August 2020.

A Semi-Structured Interview

A.1 CS Study
Task 1

• Please explain what you did in the first task.

– Do you have a point where you want to elaborate
on?

– Did you encounter any problems?

– Did anything went exceptionally well?

– Please elaborate on the output of the tool.

– Can you tell me something about the usability?

– Where do you see potential for improvement?

Task 2

• Please explain what you did in the second task.

– Do you have a point where you want to elaborate
on?

– Did you encounter any problems?

– Did anything went exceptionally well?

– Please elaborate on the output of the tool.

– Can you tell me something about the usability?

– Where do you see potential for improvement?

Comparison

• Please compare the two tasks.

• Do you have anything particular in mind that was com-
parably easy or hard?

• Would you want to use one of the tools, both or none in
the future? Why?

A.2 CTF Study

Static

• Please explain what you did in the task.

• How would you rate the usability of the Clang Static
Analyzer on a scale from 1-7, 1 very low, 7 very high?

• Please elaborate on the Usability of the Clang Static
Analyzer.

• Can you tell me something about the Output of the ana-
lyzer?

• What was your biggest problem?

• How would you rate the documentation again on scale
from 1-7?

Dynamic

• Please explain what you did in the task.

• How would you rate the usability of libFuzzer on a scale
from 1-7, 1 very low, 7 very high?

• Please elaborate on the Usability of libFuzzer.

• Please elaborate on your fuzz target.

• Have you used a dictionary or corpus?

• What did you think of the output?

• How did you interact with the output?

• How did you determine that the fuzzer is running well?

USENIX Association Seventeenth Symposium on Usable Privacy and Security 569

Comparison

• Please compare the two tasks.

• Do you have anything particular in mind that was com-
parably easy or hard?

• Would you want to use one of the tools, both or none in
the future? Why?

general

• What is a security related bug?

B Clang Static Analyzer Overview

Program Clang Static Analyzer reports

Tesseract 476
protobuf 3.9.x 92
protobuf 3.8.x 121

util-linux 142
simple-obfs 15

cmatrix 3
vlc 219

wine 4746
netdata 32
darknet 73
libnice 3

obs-studio 456
jq 4

FFmpeg 639
yuzu 339

spdlog 0
simdjson 2

Table 5: Overview of GitHub projects and reports of Clang
Static Analyzer

C Overview of Task Ordering

first started drop-out submitted success
Static-easy 8 1 7 6
Static-hard 7 4 3 0

second started drop-out submitted success
Static-easy 4 2 2 2
Static-hard 3 1 2 0

combined started drop-out submitted success
Static-easy 12 3 9 8
Static-hard 10 5 5 0

Table 6: CS: static analysis overall statistics

first started drop-out submitted success
Fuzzing-easy 9 5 4 1
Fuzzing-hard 7 4 3 0

second started drop-out submitted success
Fuzzing-easy 7 3 4 1
Fuzzing-hard 3 2 1 0

combined started drop-out submitted success
Fuzzing-easy 16 8 8 2
Fuzzing-hard 10 6 4 0

Table 7: CS: fuzzing overall statistics

first started drop-out submitted success
Fuzzing 3 0 3 0
Static 3 0 3 0

second started drop-out submitted success
Fuzzing 3 0 3 0
Static 3 0 3 1

combined started drop-out submitted success
Fuzzing 6 0 6 0
Static 6 0 6 1

Table 8: CTF: static analysis and fuzzing overall statistics

570 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Participant Static Dynamic
Step 1 Step 2 Step 3 Bug Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy

CS27-SFE no submission not started
CS31-SFE 7 3 3 3 7 / 7 3
CS1-SFE 3 3 3 3 no submission
CS9-SFE 3 3 3 3 no submission
CS19-SFE 3 3 3 3 no submission
CS15-SFE 3 3 3 3 2 / 3 2 7 / 7 (FT in TPr) 7 7
CS5-SFE 3 3 3 3 1 / 3 1 3 / 7 3 3 3 7 3 7

CS23-SFE 3 3 3 3 1 / 3 1 3 / 3 3 3 3 3 3 7

CS21-SFH no submission not started
CS25-SFH no submission not started
CS29-SFH no submission not started
CS7-SFH 3 3 3 7 no submission
CS13-SFH 3 3 3 7 no submission
CS17-SFH 3 3 3 7 7 / 7 7
CS3-SFH 3 3 3 7 m / m m 7 / 7 7 3

Participant Dynamic Static
Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy Step 1 Step 2 Step 3 Bug

CS2-FSE no submission not started
CS10-FSE no submission not started
CS12-FSE no submission not started
CS20-FSE no submission not started
CS32-FSE no submission not started
CS11-FSH no submission not started
CS14-FSH no submission not started
CS22-FSH no submission not started
CS28-FSE 7 / 7 no submission
CS16-FSE 7 / 7 7 3 3 3 3
CS24-FSE 1 / 3 1 3 / 7 7 3 3 3 3 3
CS6-FSE 2 / 3 2 3 / 7 3 3 3 3 7 7 no submission

CS18-FSH 7 / 7 7 7
CS26-FSH m / m m m / m 3 3 3 3 7
CS4-FSH 7 / 7 3 3 3 3 7
CS8-FSH 1 / 7 m 7 / 7 3 3 3 3 7
CS30-FSH 7 / 7 7 / m not started

Table 9: CS overall

Participant Static Dynamic
Step 1 Step 2 Step 3 Bug Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy

CTF1-SF 3 3 3 7 no submission
CTF5-SF 3 3 3 7 1 / 3 1 7 / 7 7 7
CTF3-SF 3 3 3 7 1 / 3 3+ 3 / 3 (FT in TPr) 3 3 7 3 3 7
CTF7-SF 3 3 3 7 1 / 3 11 3 / 3 3 3 7 3 3 7

Participant Dynamic Static
Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy Step 1 Step 2 Step 3 Bug

CTF8-FS no submission not started
CTF4-FS 1 / 3 1 3 / 3 (FT in TPr) m m 7 3 7 3 3 3 7
CTF2-FS 1 / 3 1 3 / 3 (FT in TPr) 3 3 7 3 3 7 3 3 3 7
CTF6-FS 1 / 3 10 3 / 3 (FT in TPr) 3 3 7 m 7 7 3 3 3 3

Table 10: CTF overall

USENIX Association Seventeenth Symposium on Usable Privacy and Security 571

D Comments and Usage in Future

Participant
Comment Use in Futurestatic dynamic

positive negative positive negative static dynamic none

CS5-SFE 4 2 2 9 3 3
CS15-SFE 4 4 1 7 3 3
CS16-FSE 6 1 0 5 3
CS23-SFE 3 3 1 9 3
CS24-FSE 8 7 3 3 m m m
CS31-FSE 2 4 1 2 3

∑ easy 27 21 8 35 4 2 1

CS3-SFH 8 6 0 5 3
CS4-FSH 6 6 2 6 3 3
CS8-FSH 6 6 0 7 3

∑ hard 20 18 2 18 3 1 0

∑ 47 39 10 53 7 3 1

Table 11: CS: Comments and usage in future of the static and dynamic analysis tools

Participant
Comment Use in Futurestatic dynamic

positive negative positive negative static dynamic none

CTF2-FS 2 3 2 10 3 3
CTF3-SF 2 5 1 2 3 3
CTF4-FS 2 5 1 6 3
CTF5-SF 4 2 0 4 3 3
CTF6-FS 2 4 2 5 clean code 3
CTF7-SF 8 5 0 4 3

∑ 20 24 6 31 3 6 0

Table 12: CTF Comments and usage in future of the static and dynamic analysis tools

E Demographics

Gender Male: 26 Female: 5 Other: 0 No Answer: 1
Age min: 22, max: 34 mean: 26.03, median: 25 sd=2.95, NA=0

Table 13: CS Participant Demographics

Gender Male: 8 Female: 0 Other: 0
Age min: 19, max: 32 mean: 23.25, median: 22 sd=4.2, NA=0

Table 14: CTF Participant Demographics

572 Seventeenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	Methodology
	Tool Selection
	Task Selection
	Study Design CS Study
	Study Design CTF Study
	Scoring Results

	Limitations
	Ethics
	CS Study Results
	Drop-outs
	Static Task
	Dynamic Task

	CTF Study Results
	Discussion
	Clang Static Analyzer
	libFuzzer
	Comparison

	Conclusion and Future Work
	Semi-Structured Interview
	CS Study
	CTF Study

	Clang Static Analyzer Overview
	Overview of Task Ordering
	Comments and Usage in Future
	Demographics

