usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Deception Task Design
in Developer Password Studies:
Exploring a Student Sample

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith,
University of Bonn, Germany

https://www.usenix.org/conference/soups2018/presentation/naiakshina

This paper is included in the Proceedings of the

Fourteenth Symposium on Usable Privacy and Security.
August 12-14, 2018 . Baltimore, MD, USA
ISBN 978-1-939133-10-6

Open access to the Proceedings of the
Fourteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

Deception Task Design in Developer Password Studies:
Exploring a Student Sample

Alena Naiakshina
University of Bonn

Anastasia Danilova
University of Bonn

naiakshi@cs.uni-bonn.de danilova@cs.uni-bonn.de

Christian Tiefenau
University of Bonn

tiefenau@cs.uni-bonn.de

Matthew Smith
University of Bonn
smith@cs.uni-bonn.de

ABSTRACT

Studying developer behavior is a hot topic for usable security re-
searchers. While the usable security community has ample experi-
ence and best-practice knowledge concerning the design of end-user
studies, such knowledge is still lacking for developer studies. We
know from end-user studies that task design and framing can have
significant effects on the outcome of the study. To offer initial in-
sights into these effects for developer research, we extended our
previous password storage study [42]]. We did so to examine the
effects of deception studies with regard to developers. Our results
show that there is a huge effect - only 2 out of the 20 non-primed
participants even attempted a secure solution, as compared to the 14
out of 20 for the primed participants. In this paper, we will discuss
the duration of the task and contrast qualitative vs. quantitative
research methods for future developer studies. In addition to these
methodological contributions, we also provide further insights into
why developers store passwords insecurely.

1. INTRODUCTION
Applying the philosophy and methods of usable security and privacy

research to developers [31] is still a fairly new field of research.
As such, the community does not yet have the body of experience
concerning study design that it does for end-user studies. Many
factors need to be considered when designing experiments. In what
setting should they be conducted: a laboratory, online, or in the
field? Who should the participants be: computer science students, or
professional administrators and developers? Is a longitudinal study
needed, or is a first contact study sufficient? Should a qualitative or
quantitative approach be taken? How many participants are needed
and can realistically be recruited? Is deception necessary to elicit
unbiased behavior? How big do tasks need to be? And so forth. All
these factors have an influence on the ecological validity of studies
with developers. Thus, research is needed to analyze the effects of
these design variables.

In this paper, we present a study exploring two of these design
choices. First, we examine the effect of deception/priming on com-
puter science students in a developer study.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2018.
August 12—-14, 2018, Baltimore, MD, USA.

To do so, we extended a developer study on password storage (pri-
mary study) using different study designs (meta-study) to evaluate
the effects of the design.

In end-user studies, deception is a divisive topic. For instance,
Haque et al. [[32] argue that deception is necessary for password
studies: “We did not want to give the participants any clue about
our experimental motive because we expected the participants to
spontaneously construct new passwords, exactly in the same way
as they do in real life.” However, Forget et al. [28] explicitly told
their participants that they were studying passwords and asked par-
ticipants to create them as they would in real life, in the hope of
getting more realistic passwords. In an experiment to determine
whether stating that the study is about passwords has an effect (i.e.,
priming the participants), Fahl et al. [20] found that there was no
significant effect in an end-user study. Thus, there is evidence that
deception is not needed for end-user studies. This is particularly
relevant in terms of ethical considerations, since deception studies
should only be used if absolutely necessary and the potential harm
to participants must be weighed carefully.

We face similar questions when designing developer studies. For
example, should we inform participants that we are studying the
security of their password storage code and thus prime them, or
do we need to use deception to gain insights into their “natural”
behavior?

Second, we share our insights on the differences between our quan-
titative study and a qualitative exploration of password storage. One
of the big challenges of developer studies is recruiting enough par-
ticipants to conduct quantitative research. To examine this, we
extended our qualitative password storage study [42] to implement
a quantitative analysis and contrast the insights gained with both
methods.

The rest of the paper is structured as follows. In section 2, we discuss
related work. In section 3, we introduce our study methodology
and explain how the study was extended. Section 4 discusses the
limitations of our study and section 5 the ethical considerations.
Section 6 contains the main hypotheses of our study. Section 7
presents the results and section 8 discusses the methodological
contributions. Finally, section 9 summarizes the take-aways and
section 10 concludes the paper.

2. RELATED WORK

This paper contributes to two distinct areas of research. The main
contribution concerns the effect of priming/deception in usable se-
curity studies for developers. The related work on this topic is
discussed in section[2.1] We also extend the body of knowledge on

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 297

developer studies specifically concerning password storage. Here,
the related work is divided into multiple sections. Section[2.2]dis-
cusses other developer studies in general, section [2.3] focuses on
developer studies concerning passwords, section [2.4]is about tech-
nical studies of password storage, and finally, section[2.5]discusses
work on the usability of application program interfaces (APIs).

2.1 Priming in study design

In their research on website authentication protection mechanisms,
Schechter et al. [47] explored the practice of deception in the form
of a priming effect. They conducted a study with three groups. The
participants of the first two groups were asked to role-play working
with authentication data in a bank setting. One of these groups
was thereby primed by receiving security-focused instructions. Fahl
et al. [20] conducted a between-groups study with two variables
(lab vs. online study, priming vs. non-priming). They specifically
compared real-world password choices with passwords chosen by
end-users in a study environment, considering priming and non-
priming conditions. While the primed group was asked to behave
as in real life when creating and managing passwords, the term
“password” was not mentioned at all in the introductory text for the
non-primed group. Neither Schechter et al. nor Fahl et al. found a
significant effect for either the priming or non-priming conditions.
However, both studies were conducted with end-users. Past research
has shown that experts such as developers differ from end-users with
regard to their mental models, behavior etc. [50, 34, |8]]. Research
on significant effects for developers concerning the priming and
non-priming conditions does not yet exist.

In [42], we conducted a qualitative study (from which the present
study acquired part of its data) with 20 computer science students,
in order to investigate why developers fail with regard to password
storage. Participants were asked to implement a registration task
for a web application in 8 hours. We explored four scenarios: (1)
priming (telling participants to consider password storage security)
vs. (2) non-priming (deceiving participants by telling them the study
was about API usability); and (3) web application framework with
password storage support vs. (4) web application framework with-
out password storage support. Our results indicated that frameworks
offering only opt-in support for password storage and participants
having strong background knowledge in software security practices
were not sufficient for the production of secure software. Developers
need to be told about when and how to use such security mecha-
nisms. While the study in [42] was of a qualitative nature, we aimed
at a more extensive study and invited 20 more participants for a
quantitative analysis.

With consideration for the results and findings of previous studies,
we offer initial insights into how developer security studies should
be designed. Furthermore, we compare qualitative vs. quantitative
studies and analyses, discuss time conditions for studies and exam-
ine participants’ search behavior when working on a security-related
task.

2.2 Developer studies

Acar et al. [9] conducted an online study with Python developers,
recruited from GitHub (www.github.com). They were asked to use
one of five cryptographic libraries to implement a set of security-
related tasks. The main finding of this study was that simple APIs
help developers to produce secure code; however, good documenta-
tion with a wide range of examples is still essential. For most of the
tested libraries, security success was under 80%. Furthermore, 20%
of the functional solutions were incorrectly rated by participants as
being secure.

Acar et al. [10]] conducted a between-subjects study to examine the
impact of different documentation resources on the security of code.
Fifty-four developers were given a skeleton Android app, which
they had to extend in four security-related tasks. For assistance, they
had access either to (1) Stack Overflow (www.stackoverflow.com),
(2) books, (3) the official Android documentation, or (4) could
freely choose which source to use. Programmers assigned to Stack
Overflow produced less secure code. Furthermore, Fischer et al. [26]
analyzed 1.3 million Android apps and found that 15.4% of them
contained Stack Overflow source code. Of the analyzed source code,
97.9% contained at least one insecure code part.

Fahl et al. [23]] interviewed software developers who implemented
vulnerable applications regarding Secure Sockets Layer (SSL) issues.
As a result, a framework was designed that prevented developers
from producing insecure software in terms of SSL.

Stylos and Myers [48]] investigated the relationship between secure
code and the method placement of crypto APIs. They created two
different versions of three APIs and asked programmers to solve
three small tasks. For the same task, developers tended to use the
same starting class. This resulted in faster task solution when using
APIs with starting classes that referenced the class they needed.

Prechelt [44] investigated whether diverse programming languages
(Java EE, Perl, PHP) or differences between the programmer teams
are reflected in the security of the resulting code. For each program-
ming language, they asked three programmer teams, comprising
three professional developers each, to implement a web application
in 30 h. The outcome was analyzed in terms of usability, function-
ality, reliability, structure, and security. They found the smallest
within-platform variations for PHP.

2.3 Passwords - Developer studies

As it is often difficult to recruit professional developers for studies,
Acar et al. [11] wanted to find out whether active GitHub users
could be of interest for usable security studies. They conducted an
online experiment with 307 GitHub users, who had to implement
security-related tasks. One of these tasks considered credential
storage. Neither the self-reported status as student or professional
developer nor the participants’ security background correlated with
the functionality or security of their solutions. However, they found a
significant effect for Python experience on functionality and security
of program code.

Bau et al. [13] examined the vulnerability rate of web applications
and programming language as well as developers in terms of ca-
reer (start-up, freelancer) and their security background knowledge.
For the start-up group, existing programs were analyzed. For the
freelance group, eight compensated developers were invited to par-
ticipate in a developer study. As compared to the start-up group, the
freelancers were primed for security in the task description. With
regard to secure password storage, it was found that there is a huge
gap between the freelancers’ knowledge and their actual implemen-
tation. Furthermore, the use of PHP and freelancers increased the
software vulnerability rate.

Nadi et al. [41] studied the kinds of problems developers struggle
with when using APIs. They analyzed the top 100 cryptographic
questions on Stack Overflow as well as 100 randomly selected
GitHub repositories that used Java crypto APIs. Within the analyzed
projects, they found passwords being encrypted. This is a discour-
aged practice, which should be replaced by hashing. Afterwards,
they conducted a study with 11 developers and a survey with 48
developers. Code templates, tools to catch common mistakes and

298 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

better documentation that includes examples were suggested for
solving problems.

2.4 Passwords - Technical analysis

Bonneau and Preibusch [[15] analyzed 150 websites and found they
all lacked secure implementation choices. They did not use encryp-
tion, stored end-user passwords in plain text, or offered only little or
no protection against brute-force attacks. This was particularly true
for websites with few security incentives, such as newspapers.

Finifter and Wagner [24] analyzed nine implementations of the
same web application, written in three different programming lan-
guages (Java, Perl, and PHP) in order to find correlations between
the number of vulnerabilities and the programming language as
well as the framework support for various aspects of security. They
found no correlation between the security of web applications and
the programming language. Automatic features offered by frame-
works were an effective way of preventing vulnerabilities in general;
however, this did not apply for secure password storage.

Egele et al. [19] analyzed more than 11000 Android apps, with a
focus on previously formulated security rules as well as password
storage security. According to their findings, 88% violated at least
one of those rules.

2.5 Usability of crypto APIs

While APIs are crucial for implementing secure applications that
handle sensitive data, many of them seem to be too complex. As a
conclusion to various examples [[19/ 40l {41]], Green and Smith [31]]
presented ten principles for crypto APIs in order to reduce developer
errors. Further, Gorski et al. [29]] evaluated studies concerning
API usability. They proposed eleven usability characteristics they
consider necessary for secure APIs.

Lazar et al. [40] studied cryptographic vulnerabilities that were
reported in the Common Vulnerabilities and Exposures (CVE)
database. Of these, 83% were found to be a consequence of API
misuse. They stated that no existing technique could prevent certain
classes of mistakes.

3. METHODOLOGY

The aim of our study was to gain insight into the design of developer
studies. To that end, we used two different kinds of independent
variables (IVs). The first was on the meta-level, i.e., variables con-
cerning study design. In our case, we had two meta-IVs: task design
(priming and deception) and type of study (qualitative and quantita-
tive). We refer to these as meta-variables of the meta-study. We also
have an independent variable concerning the actual study subject, in
our case the framework used to store passwords (JavaServer Faces
[JSF] or Spring). We refer to this variable as the primary variable of
the primary study.

The study presented in this paper is an extension of our previous
qualitative study on password storage [42]]. This quantitative study
was planned at the same time to facilitate the analysis of the study
type meta-variable, comparing the qualitative and quantitative ap-
proaches.

To summarize the qualitative study: participants were told that they
should implement the user registration functionality for a social
networking platform. Half the participants were instructed to use
the Spring framework, which has built-in features for secure pass-
word storage. The other half was instructed to use JSF, a framework
with manual support for password storage. This part of the design
addressed the primary study. Additionally, half the participants were
told the purpose of the study was to examine their password behavior

and that they should store the passwords securely. The other half re-
ceived a deceptive study description, which stated that the study was
about the usability of APIs. For more detailed information and the
exact phrasing of the tasks, see [42]. After the task was completed, a
questionnaire was administered and semi-structured interviews were
conducted. For the task description and the interviews, participants
could choose their preferred language, either English or German.
The survey, however, was in English and had to be answered in
English. The study was set up for 8 h.

The main difference between the two studies was that in the qualita-
tive study, the exit interviews were used to gain qualitative insights
into the development process, while in the quantitative study, we
used the survey responses and data gathered by the platform to
conduct statistical testing. The hypotheses for this paper were de-
veloped before the qualitative analysis in [42] was started. This
approach allowed us to gain insights into how a qualitative approach
compares to a more quantitative approach.

In the combined study, we examined the following independent
variables: for the primary study, the IV was the framework used for
development (either Spring or JSF). For the meta-study, we used
the IVs priming (deception or true purpose) and the type of study
(qualitative or quantitative).

Participants for both studies were recruited together via a pre-
screening survey advertised through the computer science email
list of the University of Bonn and flyers on the computer science
campus. In total, 82 computer science students completed the ques-
tionnaire. Of these, 67 were invited to take part in the study. Seven
of these were used for pilot studies, leaving 60 invited participants.

The first 20 participants were used for the qualitative study pub-
lished in [42]. The remaining participants were used to extend the
participant pool for this study. Although we had not planned to do
a qualitative analysis on the remaining candidates, we conducted
the exit interviews with all participants. This was done to treat all
participants equally and to enable extending the qualitative analy-
sis beyond the initially planned 20 in the event we did not reach
saturation.

We removed two participants from the dataset of [42], IN1 and SP2.
Due to a technical fault, the code history was not stored for JN1, and
SP2 misunderstood the task so completely that no useful data was
collected. This was not a big problem for the qualitative analysis but
would have made the quantitative comparisons more complicated.
Two random participants with a similar skill profile were selected
as replacements. Of the remaining 30 invited participants, only 22
showed up. This left us with a total of 40 participants. Participation
was compensated with 100 euros. Table[T]shows the demographics
of all 40 participants. In the rest of the paper, we will present
the quantitative analysis based on these 40 participants. The four
conditions being tested are shown in section[3.1] In addition, we
will contrast the qualitative findings in [42] with the quantitative
findings.

3.1 Conditions

We conducted an experiment with 40 computer science students in
order to explore whether task framing and different levels of frame-
work support for password storage affect the security of software.
Participants were asked to implement a registration process for a
web application in a social network context, as described in [42].
The experiment was conducted under the following four conditions:

1. Priming - Participants were explicitly told to store the user

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 299

Gender Male: 77.5% Female: 15% Prefer not to say: 7.5%
Ages mean = 24.89 median = 25 sd =2.89
Level of education Bachelor: 30% Master: 65% Other: 5%
Study program Computer Science: 82.5% Media Informatics: 15% Other: 2.5%
Country of Origin Germany: 32.5% India: 27.5% Syria: 5%

Iran: 5% United States: 2.5% Korea: 2.5%

Indonesia: 2.5%
Finnland: 2.5%

Pakistan: 2.5%
Prefer not to say: 2.5%

Turkey: 2.5%
Uzbekistan: 2.5%

< 1year:42.5%
6-10 years: 5%

Java experience

1-2 years: 27.5% 3-5 years: 25%

Table 1: Demographics of 40 participants.

passwords securely in the Introductory Text and in the Task
Description.

2. Non-priming - Participants were told the study is about API
usability, but were not explicitly asked for secure password
storage.

3. Framework with opt-in support for password storage -
Participants were advised to use a framework offering a secure
implementation option, which could be used if they thought
of it or found it. Spring was chosen as a representative frame-
work [42].

4. Framework with manual support for password storage -
Participants were advised to use a framework with the weakest
level of support for password storage. Thus, they had to
write their own salting and hashing code using just crypto
primitives. JSF was considered as a suitable web framework
in this case [42].

Java was selected as the programming language because it is one
of the most popular and widely used programming languages for
applications and web development |1} (7|5} |3} |4, [6]; in addition, it
is regularly taught at our university. Therefore, we reasoned that
we would be able to recruit a sufficient sample of computer science
students for our study.

Since a related study [11] has shown that self-reported skills of
developers affect the study results, we used randomized condition
assignments and counterbalanced for participants’ skills reported
in the pre-questionnaire (this is known as Randomized Block De-
sign [37]]). The pre-questionnaire can be found in Appendix[A]

3.2 Deception

We examined the effect that concealing the true purpose of the
study had as opposed to openly making it about secure password
storage. Kimmel indicated three stages in which deception can
be integrated: subject recruitment, research procedure and post-
research/application |36, p.65]. In our study, we investigated
whether participants made sure to store end-user passwords securely,
if they were not explicitly told to do so in either the Introductory Text
or the Task Description (non-primed group). In the recruiting phase,
all candidates (primed and non-primed) were told the purpose of the
study is API usability research (“The goal of the study is to test the
usability of different Java web development APIs.”). Consequently,
we used deception in the subject recruitment and research procedure
stages.

3.3 Experimental environment

The experiment was performed in an in-person laboratory, which
allowed us to control the study environment and the participants’
behavior. We created an instrumented Ubuntu distribution designed
for developer studies that included code-specific tracking features.
Thus, we were able to collect all data produced by the participants
within the 8 h sessions (e.g., the web history and program code
history). Every code snippet that was compiled was secured in a
history folder. In addition to a video recording of the participants’
desktops, the setup also allowed us to take frequent snapshots of their
progress. In order to capture copy/paste events, we used Glipper [2],
a clipboard manager for GNOME, which we modified slightly to
meet our requirements (e.g., adding a time stamp to the events in
a log file). In this manner, the study environment allowed us to
identify all participants who copied and pasted code for password
storage and the websites from which they received the code.

3.4 Survey

Before working on the task, participants filled out a short entry
survey regarding their expectations for task difficulty. They also
completed a self-assessment of their programming skills (see Ap-
pendix[B). After finishing the implementation task, participants were
required to complete an exit survey (see Appendix [C). We asked
participants for their demographics, security background knowledge,
programming experience, and experience with the task and APIs.
Furthermore, we asked open questions that could be answered with
free text. Two coders independently coded the participants’ answers
by using Grounded-Theory and compared their final code books
using the inter-coder agreement. The Cohen’s kappa coefficient
(x) [118]] for all themes was 0.78. A value above 0.75 is considered a
good level of coding agreement [27].

To analyze the usability of the APIs, we applied the 11-question
scale suggested by Acar et al. [9] (Appendix [C.I)), since it is more
developer-oriented than the standard System Usability Scale (SUS)
[[16], which is more end-user oriented. Acar et al.’s usability scale is
a combination of the cognitive dimensions framework [[17], usability
suggestions from Nielsen [43]], and developer-related recommenda-
tions from Green and Smith [31]].

3.5 Scoring code security

We used the same scoring system as was used in [42]]. For each
solution, we examined its functionality and security. We rated
participants’ solutions as functional if “an end user was able to
register the Web application, meaning that his/her data provided
through the interface was stored to a database” [42].

We used two measures to record the security of a participant’s

300 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

solution. Every solution was rated on a scale from O to 7, according
to the security score introduced in [42] (see Appendix @]) This value
is referred to as the security score. In addition, we used a binary
variable called secure which was given if participants used at least
a hash function in their final solutions and thus did not store the
passwords in plain text.

We were also interested in participants who attempted to store user
passwords securely, but struggled and then deleted their attempts
from their solutions (this was coded as attempted but failed, or ABF).
For this, we collected and analyzed participants’ code history. In
order to identify security attempts, we used the Unix grep utility.
With grep, we searched for security-relevant terms based on the
frameworks and best practices (see Appendix [F). When a term was
found, we analyzed the code snippets manually.

It is important to note that we still gave security scores to participants
who implemented secure password storage but failed to create a
functional solution, i.e., the user registration did not work. The
rationale for this was that we were interested in how participants
stored passwords. All other parts of the task were distraction tasks
and thus of less relevance.

4. LIMITATIONS

Our study has several limitations that need to be considered when
interpreting the results.

The most noteworthy limitation is that we used a convenience sample
comprising 40 computer science students from a single university.
Despite having a pool of 1600 computer science students at our
university and offering fairly high compensation, we did not get
more volunteers. We will discuss this limitation in the context of
both the primary study and the meta-study. For the meta-study, we
wanted a homogeneous sample so we could attribute any changes
in outcome to the difference in task design. The limitation of this
decision is that our results are not currently transferable to other
participant groups. While we believe it is likely that other student
samples will produce similar results, we expect bigger differences
when working professionals are considered. It is also likely that
there will be big differences between different groups of working
professionals. These differences will need to be explored in future
work.

The primary study is limited in the same way. Here, it would have
been more desirable to have a more diverse sample; however, this
would have conflicted with the need for a homogeneous sample for
the meta-study. Since the meta-study was our main goal, we ac-
cepted the limitation of the primary study. That being said, there are
early indications that computer science students can be acceptable
proxies for professionals in developer studies [S1} 38} |10, 11L|33}|14}
491 139] 146]. This sample was not selected for its representatives and
thus should not be used to infer anything about non-students.

Since our study was performed in a laboratory environment with
laboratory PCs, we have an unknown amount of bias in our results.
This is particularly relevant to the meta-study. While the low amount
of attempted security in the non-priming condition seems plausible
in light of the many password database compromises, we have
no way of confirming that we are measuring the same effect. It
is possible that the low amount of attempted security in the non-
primed group is not due to participants’ lack of awareness that
passwords should be hashed and salted, but rather to a lack of
concern for passwords in a study environment. In fact, we received
statements to this effect in the exit survey. Of the 20 non-primed
participants,

two attempted to implement a secure solution but failed,

to secure it themselves,

not part of the task,

than security,

any reason why they did not implement it, and

for password storage.

We must point out that the above statements are based on self-
reporting by the participants. False reporting is possible in both
directions. Participants who might not have been aware of the need
for security might have felt embarrassed and stated that they did
know but chose not to implement it and made up a reason for it. It is
also possible that a participant who did know stated otherwise so as
not to have to explain why security was not implemented. We must

acknowledge these limitations.

We only conducted Bonferroni-Holm correction for our main hy-
potheses. For the rest of the exploratory analysis, we accepted the
higher probability of type 1 errors to lower the risk of type 2 errors.
Thus, new findings need to be confirmed by replication before they

are used.

5. ETHICS

At the time of the study, our institution did not have an IRB for
computer science studies. The study design was instead discussed
and cleared with our independent project ethics officer. Our study
also complied with the local privacy regulations. Participants gave
written informed consent before participating in the study. Since half
our participants underwent a deception condition, the study ended
with an in-person debriefing, where all participants were informed
of the true purpose of the study. Most participants were not bothered
by the deception condition at all. However, some participants felt
that they were judged unfairly and they stated that they would have
included security if we had asked for it. After re-stating that this
was completely fine, that we were interested in the APIs’ ability to
nudge developers toward security, and that they were not at fault,
there did not seem to be any lingering negative feelings. There were
also positive reactions to the deception. The majority of participants
remarked that they learned a lot through the deception and will be
more aware of security in future tasks and jobs, even if they are not

explicitly asked to think of security.

6. HYPOTHESES & TESTS

We examined seven main hypotheses in our experiment. Two con-
cerned the meta-focus of this paper, namely, the effect of prim-
ing/deception, denoted by P(riming). Two further concerned the
A/B test comparing the two frameworks, denoted by F(ramework),
and the final three were general tests concerning password storage

security, denoted by G(eneral).

H-P1 Priming has an effect on the likelihood of participants attempt-

ing security.

H-P2 Priming does not have an effect on achieving a secure solution

once the attempt is made.

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 301

two thought it was secure despite not having done anything

two stated that they did not implement security because it was

three stated that the functionality was more important to them

three were aware that security was needed but did not give

eight were not aware that hashing and salting were important

H-F1 Framework has an effect on the security score of participants
attempting security.

H-F2 Framework has an effect on the likelihood of achieving func-
tional solutions.

H-G1 Years of Java experience have an effect on the security scores.

H-G2 If participants state that they have previously stored pass-
words, it affects the likelihood that they store them securely.

H-G3 Copying/pasting has an effect on the security score.

6.1 Meta-study

It is natural to assume that requesting a secure solution will lead
to more attempts at security (H-P1). The interesting aspect here
was how many of the non-primed participants attempted a secure
solution. While we expected priming to increase the number of
attempts, we did not expect a different failure rate between the prim-
ing and non-priming group (H-P2), i.e., if non-primed participants
attempted security, they should not have failed more often than
primed members.

6.2 Primary study

While only indirectly linked to security, we also considered the
possibility that the differences between the two frameworks (JSF
and Spring) could lead to different rates of functionality (H-F2). We
also expected that the greater level of support offered by Spring
would increase the security score of Spring participants (H-F1).

6.3 General

The above hypotheses are novel to this work. However, we also
wanted to confirm findings from related studies. In their study, Acar
et al. [[11]] observed that the programming language experience had
an effect on the security of participants’ solutions. Therefore, we
also assumed we would observe an effect regarding experience with
the Java programming language and the security score of partici-
pants’ solutions (H-G1). In addition, we assumed that if participants
had experience with storing user passwords in a database backend,
they would be more likely to create a secure solution in the study
(H-G2). Finally, several studies noted the effects of copy/paste on
study results 9], especially in terms of security [10} 21} 22, 23].
Thus, we assumed that copy/paste events would affect the security
code of our participants as well (H-G3).

6.4 Statistical testing

We chose the common significance level of o = 0.05. When con-
ducting tests on all 40 participants, we labeled the group as “all”.
When only testing subgroups, these were also labeled for easy in-
terpretation. We used the Fisher’s Exact Test (FET) for categorical
data. For numeric data, we considered linear regression and logistic
regression for binary data if the data was normally distributed. In
order to test for normality, we used the Kolmogorov-Smirnov test
and plotted the data for manual inspection. For data that was not
normally distributed, we used the following non-parametric tests: in
order to find differences between all four conditions, we used the
Kruskal-Wallis test; for two groups, we used the Mann-Whitney U
test. In both cases, the Levene’s median-based homogeneity of vari-
ance test showed the distributions among the groups to be similar.
Statistically significant values are indicated with an asterisk (*).

Of the seven main hypotheses, three concerned the security score,
two concerned the binary secure value, one concerned the attempted
security, and one concerned functionality. Since all but the func-
tionality tests were closely related, we applied family-wise error

correction using the Bonferroni-Holm method with a family-wise
correction of 6. These analysis sections are marked with the relevant
hypothesis label. However, we did not apply multiple testing correc-
tion in the exploratory part of our analysis (sections not marked with
a hypothesis label). Since virtually no research has been conducted
on study design for developer studies, we thought it was more im-
portant to discover interesting effects for future research to explore
than it was to avoid type 1 errors while potentially dismissing an
important effect merely because our sample size was not big enough
(i.e., type 2 errors). For more information on family-wise errors,
see [12]]. To ease identification, we labelled Bonferroni-Holm cor-
rected tests with “family = N, where N was the family size, and
reported both the initial and corrected p-values.

7. RESULTS

While our main goal was analyzing the meta-study results, we began
by analyzing the functionality and security of the primary study
since these results were needed for the meta-analysis. Sections
analyzing one of the seven main hypotheses are marked with the
hypothesis label.

7.1 Functionality

Here, we discuss the functionality of the code the participants pro-
duced. We considered a solution as functional if an end-user account
could be created. Figure[T]shows the distribution of functional so-
lutions across our conditions. Of all 40 participants, 26 (65%)
produced a functional solution. As shown in Figure[T] the number
of participants who were able to solve the functional task is a bit
higher in the Spring group compared to the JSF group.

7.1.1 Framework effects functional solution (H-F2)
Eleven of 20 (55%) participants using JSF and 15 of 20 (75%) using
Spring managed to solve the task functionally. These differences
were not statistically significant (sub-sample = all, FET: p = 0.32,
odds ratio = 2.40, CI = [0.54, 11.93]). Thus, we do not reject H-
F2. However, we only had a power of 0.17, so this effect is worth
looking at in follow-up studies. Interestingly, a significant result
would mean that the more complex framework actually has better
usability with respect to functional solutions.

7.1.2 Part-time job in computer science

We asked our participants whether they had a part-time job in com-
puter science. In prior research, Acar et al. counted students who
had part-time jobs as professionals [[11]]. We, however, found no sig-
nificant effect between having a part-time job in computer science
and a functional solution (sub-sample = all, FET, p = 1.0, odds ratio
=0.84, CI=[0.19, 3.89]).

7.2 Security

Figure 2] shows the distribution of secure solutions across our condi-
tions. Twelve (30%) of our 40 participants implemented some level
of security for their password storage. Of the 20 participants in the
non-primed groups, 0% stored the passwords securely. While we
had expected significantly fewer secure solutions in the non-primed
groups, we were surprised by this extreme result. From the primed
group using JSF, 5 of 10 (50%) implemented some level of security
(mean security score = 2.15, median = 1, sd = 2.67). From the
primed group with the Spring framework, 7 of 10 (70%) participants
implemented some level of security (mean security score = 4.2,
median = 6.0, sd = 2.9). Table[f]shows an overview of the security
scores achieved by our participants (Appendix [E).

302 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

Non-Priming
I Priming

| |8

Framework

2 4 6 8
of participants with functional solutions

10

Figure 1: Functionality results per framework, split by primed
vs. non-primed groups.

Non-Priming

I Priming

|0
4 JSF
g N 5
z
:
) . 0
I Sprin ‘

P N 1
0 2 4 6 8 10

of participants with secure solutions

Figure 2: Security results per framework, split by primed vs.
non-primed groups.

7.2.1 More Java experience, more security (H-G1)

In prior research, Acar et al. found that more Python experience
leads to more security [11]]. We wanted to examine this effect within
our sample. We found no significant differences in our study (sub-
sample = all, Kruskal-Wallis: y2 = 4.118, p = 0.249, cor-p = 0.498,
family = 6). Between the different groups of Java experience, the
security score showed no significant effect. However, it must be
mentioned that Acar et al. studied student and professional volun-
teers recruited on GitHub without compensation. Their participants
had a wide range of years of experience in Python compared to our
students in Java. So we have a number of differences in the sam-
ples. It is important to note this difference since it makes sense to
take skills into account during condition assignment in randomized
control trials. In short, we failed to confirm H-G1.

7.2.2 Previous password experience (H-G2)

We hypothesized that participants who had previous experience
storing user passwords in a database backend would be more likely
to add security in the study. Therefore, we wanted to test whether
participants who reported having stored passwords before performed
differently regarding security compared to participants who had
never stored passwords before. Nine non-primed and 15 primed
participants reported having stored passwords prior to the study.
We found no significant differences in security in comparing the
different groups of participants (sub-sample = all, FET: p = 0.297,
cor-p = 0.498, odds ratio = 2.54, C.I =[0.49, 17.72], family = 6).
We thus fail to reject the null hypothesis of H-G2 and cannot draw
conclusions on this hypothesis. Furthermore, we calculated a power
of 0.19, indicating that the effect is not reliable.

7.2.3 Framework effects security score (H-F1)

In this section, we only consider those participants who attempted
security. We wanted to examine whether the framework used af-
fected the security score (including ABF scores). We expected that
Spring might score better because, in contrast to JSF, it offers built-
in functions for storing passwords securely by using hashing, salting

and iterations.

The descriptive statistics for the JSF group are Min 2, Median 5.5,
Mean 4.3, and Max 6. The descriptive statistics for the Spring
group are Min 6, Median 6, Mean 6, and Max 6. Due to the
Bonferroni-Holm correction, the difference between the two groups
is not flagged as significant (sub-sample = all A attempted security
=1, Mann-Whitney U = 15, p = 0.051, cor-p = 0.20, family =
6). It does seem likely, though, that a larger sample would confirm
the trend that Spring participants earned higher scores than JSF
participants. This will be put into further context in section

7.2.4 Usability of frameworks

We used the usability score from Acar et al. [9] (see Appendix
[CI) to evaluate how participants perceived the usability of the two
frameworks. We compared the values of the usability score for all
four groups: non-primed JSF (mean = 48.25, median = 51.25, sd
= 13.54), primed JSF (mean = 50.50, median = 53.75, sd = 9.78),
non-primed Spring (mean = 50.50, median = 55.00, sd = 20.10),
primed Spring (mean = 58.75, median = 57.50, sd = 15.65). We
found no significant effect comparing all four groups (sub-sample
= all, Kruskal-Wallis: x2 = 3.169, p = 0.37). Furthermore, we
examined whether the frameworks had different usability scores
when the participants attempted to solve the task securely. We did
not find a significant effect in this case either (sub-sample = all A

attempted security = 1, Mann-Whitney U = 21.5, p = 0.29).

7.2.5 Security awareness

Fourteen primed and two non-primed participants believed that
they managed to store user passwords securely. The two non-primed
participants erroneously believed they had stored passwords securely
(JNS, JN7). Their given survey answers suggested that neither had
any background knowledge of password storage security at all. The
primed participants were additionally asked whether they would
have been aware of security if we had not explicitly ask them for it.
Nine of the 14 participants indicated they would have stored user
passwords securely, even if they had not been explicitly asked to
do so. The fact that only two out of 20 non-primed participants

attempted security suggests this is overly optimistic.

7.2.6 Security classes

In prior work, Acar et al. found that security courses had a significant
effect on security [[11]]; therefore, we asked our participants which
courses they had attended at our university in the past. We gave one
point per security-relevant course. Since not all Masters students
had completed their undergraduate studies at the same university,
we also asked for other courses. None of the participants added
a security-relevant class in the open question space. Participants
reported they had attended between 0 and 4 security classes (mean
= 0.8, median = 1, sd = 0.99). We found no significant evidence in
the overall group (sub-sample = all, FET: p = 0.737, odds ratio =

1.39, CI =[0.29, 7.022]).

7.2.7 Part-time job in computer science

We found no effect between having a part-time job in computer
science and a secure solution (sub-sample = all, FET, p = 1.0, odds

ratio = 1.10, CI = [0.22, 5.30]).

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 303

7.2.8 Web browser history & task completion time

In order to analyze the web browser history, we aggregated all our
participants’ browser history. We assessed the visit count of all
participants (mean = 179.0, median = 174.5, sd = 97.02). We could
not analyze the browser history of one of our participants, because
he had deleted it after completing the task. We found a total of
6224 distinct web pages for all participants. We also measured the
time our participants needed to solve the task [hours] (mean = 5.11,
median = 5.35, sd = 1.72). On average, participants visited 36.2
pages per hour (mean = 36.2, median = 31.52, sd = 16.44). We
tested whether there was a difference in security that depended on
the number of websites participants used. The results show that
the website count was not significantly relevant (logistic regression,
odds ratio = 1.0, C.I =[0.99, 1.00], p = 0.423).

7.3 Priming

7.3.1 Priming leads to more attempts to store user
passwords securely (H-P1)

The main goal of our study was to measure the effect of priming.
Only two of 20 non-primed participants attempted to store the pass-
words securely, compared to 14 of 20 in the primed groups. This
difference is statistically significant (sub-sample = all, FET: p =
0.000*, cor-p = 0.001*, odds ratio = 19.02, C.I = [3.10, 219.79],
family = 6). Thus, we can reject the null of H-P1 and conclude
that priming has a significant effect. We already stated we were
surprised that no non-primed participant achieved a secure solu-
tion. This is mirrored in the very low number of participants who
attempted to create a solution. However, we were also surprised
that six participants in the primed group did not attempt a secure
solution, since it was explicitly asked of them. Of these, though,
three also did not manage to create a functional solution. In the
exit survey, all six participants stated that they had not achieved an
optimal solution and cited technical difficulties that prevented them
from attempting to create a secure solution. For instance, SP6 noted:
“[I] encountered errors in connecting with the DB through Spring
JPA and was not able to come up with the solution. As a result [I]
could not focus on implementing an algorithm to securely store the
password.”

It is interesting to note that even when security was explicitly stated
as the goal of the study, these participants still wanted to create the
functional solution before adding the security code.

7.3.2 Priming effect on achieving a secure solution
once the attempt is made (H-P2)

We had hypothesized that the priming effect would only influence
whether a participant would think of adding security, but once a
participant had made the decision to add security, the will to follow
through would be independent of priming. Now, it is very difficult to
make a convincing case of no-effect using frequentist statistics with
a small sample size; however, this may not be a concern. It turned
out that there might actually be an effect. In the non-primed group,
two of 20 attempted security but did not follow through to achieve
a secure solution. In the priming group, 14 of 20 attempted and 12
achieved a secure solution. The difference between the groups is
significant before correcting for multiple testing (sub-sample = all
A attempted security = 1, FET: p = 0.05, cor-p = 0.20, odds ratio
= Inf, CI = [0.64, Inf], family = 6). The same goes for the security
scores (sub-sample = all A attempted security = 1, Mann-Whitney
U: 2.0, p = 0.034%). Although this effect was not significant after
correction, we think this is an important observation which should
be examined in future studies. While it is possible that the small
number of attempts in the non-primed group skewed our results,

it is also possible that the failure to mention security in the task
not only meant participants were not explicitly informed that secu-
rity is important for password storage, but potentially discouraged
participants who knew this from implementing it. This could have
implications outside of study design since this effect is likely to oc-
cur in everyday life as well where developers might not be explicitly
asked to secure their code and thus be dissuaded from doing so even
if they know they should.

While we fail to reject the null of H-P2 due to the Bonferroni-Holm
correction, we find the data to be highly interesting and suggest
examining this effect in future studies.

7.4 Copy/Paste
7.4.1 Security and copy/paste (H-G3)

Our analysis of the copy/paste behavior of our participants showed
another interesting result.

Of the 40 participants, only 17 copied and pasted code. Of these,
12 created a secure solution. The surprising aspect is that all secure
solutions come from participants who copied and pasted security
code. Not a single "non-copy/paste" participant achieved security.
This difference was statistically significant (sub-sample = all, Mann-
Whitney U =57.5 p = 0.000%*, cor-p = 0.000%, family = 6). Thus,
we reject the null of H-G3. However, it is noteworthy that we see a
positive effect of copy/paste. This is in contrast to previous work
by Acar et al. [[10] and Fischer et al [26]. For example, Acar et al.
stated in their discussion: “Because Stack Overflow contains many
insecure answers, Android developers who rely on this resource are
likely to create less secure code” [[10]. And Fisher et al. stated in
their conclusion: “We show that 196,403 (15%) of the 1.3 million
Android applications contain vulnerable code snippets that were
very likely copied from Stack Overflow” [26].

These negative views are in stark contrast to our findings that 0% of
participants who did not use copy/paste created a secure solution.
We do not dispute the findings of Acar et al. and Fisher et al., but we
do show that there is also a significant positive effect of copy/paste.

This finding also changes how we must interpret the difference in
security scores between the two framework conditions presented in
section[7.2.3] All secure Spring participants scored 6 points, while
the JSF scores varied between 2 and 6. This could indicate that
the Spring API has better usability, because it has safer defaults.
However, this usability advantage seems to only affect our partic-
ipants indirectly, via the web sources they use. This suggests that
it is worth considering testing the usability of APIs not only with
software developers but also with those who create web content. In
the following section, we take a closer look at the websites used by
our participants.

7.4.2 Websites used for copy/paste

Almost half of the participants (42.5%; 17/40) copied password
storage examples from various websites on the Internet and pasted
it to their program code. Of these, 82% (14/17) were primed partic-
ipants. In all other cases, participants copied code from websites
covering storage of user data in general (e.g., name, gender, email),
adapting it for passwords. These websites were not considered for
further analysis, since we were only interested in password storage
examples.

Table 5] (Appendix [F) shows all websites from which participants
copied and pasted code for password storage into their solutions.
The table also considers participants who attempted to store user
passwords securely but did not include the security code in their final

304 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

solutions (ABF). We manually analyzed all proposed examples for
password storage on these websites by using the same security scale
as applied to the evaluation of participants’ code (see Appendix D).
If websites introduced generic solutions without predefined parame-
ters for secure password storage, but discussed how these should be
chosen in order to achieve security (e.g., OWASP: General Hashing
Example (Appendix [F))), we still awarded points for these param-
eters according to the security scale. Additionally, we compared
the security scores participants received for their solutions with the
scores of password storage examples from the websites they used.
Since websites often contain more than one code snippet, we manu-
ally scored all of them and then used the following classification of
snippets:

e Most insecure example - The worst solution we found on
the page.

e Obvious example - The most obvious solution in our subjec-
tive assessment, e.g., answers on Stack Overflow that are rated
with a high score by the community. For all other websites,
we classified examples as obvious if they were posted at the
beginning of the website.

o Most secure example - The solution with the highest security
score.

We found that all participants who implemented password storage
security (100%, 12/12) copied their program code from websites on
the Internet. The majority, 75% (9/12) of participants, achieved the
almost maximum score of 6/7 points in our study. These participants
copied and pasted code from websites introducing up-to-date, strong
algorithms. One thing the websites had in common was that all
solutions had good security scores. Only one participant was on
a website where the least secure example was “only” a 5.5 score.
However, the most obvious example was scored with a 6 and taken
by the participant.

The other three participants came across blog posts and tutorials
with outdated or unsecure implementation (JP2, JP3, and JP10). For
instance, JP2 copied code from a tutorial that was published in 2013
(see Appendix[F] Blog Post: Hashing Example). Thus, he adopted
an iteration count of 1000 for PBKDF2, although 10000 iterations
are recommended by NIST today [30]. Interestingly, this tutorial
also discussed the usage of MD5, berypt, and even scrypt with
associated program code examples. The example for MD5 was listed
at the top of the website; we therefore classified it as the obvious
example. But the author did state that this solution is vulnerable
to diverse attacks and should be used with a salt. The blog post
also discussed a program example for scrypt, which we classified
as most secure. This was the only website visited by our partici-
pants where an example scored 7/7 points. However, JP2 decided
to use PBKDF2, for which he found a general hashing example at
the Open Web Application Security Project (OWASP) website (see
Appendix[F} OWASP: General Hashing Example). Although proper-
ties of parameters are discussed on the OWASP website in general,
they are not applied in the code example. Therefore, JP2 searched
for a similar implementation with predefined parameters and ended
up with an outdated iteration count.

JP3 copied code that only contained a weak SHA1-based example.
More interestingly, JP10 merged program code from four websites.
Although one website included code with three points for an obvious
example and five points for a most-secure example, he received only
two points for his final solution. He did not use a salt, despite the fact

that he copied code from an obvious example on Stack Overflow that
considered a function with a salt as an input parameter. However,
the example did not include a predefined implementation of the salt
and was not implemented by our participant.

An interesting priming effect can be seen between the two partici-
pants, JP7 and SN8, who both copied code from websites in which
user credentials were stored in plain text. The primed participant,
JP7, used the unsecure blog post for gaining a functional solution
and afterward installed a Java implementation of OpenBSD’s Blow-
fish password hashing scheme, jBCrypt, and received six points. In
contrast, the non-primed participant, SN8, did not take any further
action to implement security.

Only two of the 20 non-primed participants considered security
while programming, though they did not provide secure solutions in
the end (JN9, SN4). JN9 was able to implement a functional solution
storing user passwords securely. However, he accidentally deleted
parts of his code, resulting in errors he was unable to correct. At
the end, he provided a functional solution without including secure
password storage. In terms of copy/paste, JNO is interesting since
the solution he implemented had, at one point, a security score of
3, although the website he used for copy/paste was scored with 2
points. He was the only participant who used a salt that he did not
copy and paste from a website, but rather included it by himself.
However, he used the user’s email address as the salt, which is not
considered a security best practice.

In summary, no participant who copied/pasted code used the most
unsecure example on websites. Whenever the obvious security score
differed from the most secure examples (true for 3/21 websites),
participants used the latter. If participants’ code was merged from
more than one website (JP2, JP7, and JP10), participants’ security
score was always higher compared to the lowest-scored website,
considering most secure examples.

7.5 Statistical testing summary

Table [2] gives an overview of the seven main hypotheses and the
results of our statistical tests, with both the original and Bonferroni-
Holm corrected p-values. We have two very clear results. First,
concerning the meta-study: priming has a huge effect. Second,
concerning the primary study: copy/paste has a strong positive
effect on code security.

The effects of H-P2 and H-F1 were not statistically significant af-
ter correcting for multiple testing, but seem promising enough to
examine in future work. It is also noteworthy that we did not find
a significant effect for H-G1, which has been found in other stud-
ies. This is likely due to the fact that with only a student sample,
the range of experience was so small that the effect is not large
enough. This is important to know since it simplifies study design
for developer studies conducted with students.

7.6 Examining survey open questions

We analyzed open questions of the exit survey for trends rather than
for statistical significance, to gather deeper insights into the rationale
behind participants’ behavior.

Before mentioning security at all, we asked our participants whether
they solved the task in an optimal way (see Appendix [C} Q2). Thus,
we were able to observe whether non-primed participants based their
answers on functionality rather than on security. Seven out of 40
participants believed their solution was optimal (JP3, JN10, SN1,
SN2, SN5, SN7, and SP1). In fact, most of the participants were
non-primed and solved the task functionally but not securely. Some

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 305

H Sub-sample v DV Test O.R. C.I p-value cor — p-value
H-P1 - Priming Attempted security FET 19.02 [3.10,219.79]1 0.000" 0.001"
H-P2 Attempted security = 1 Priming Secure FET Inf [0.64, Inf] 0.05" 0.20
H-F1 Attempted security = 1 Framework Security score (incl. ABF) Mann-Whitney - - 0.051" 0.20
H-F2 - Framework Functional FET 2.40 [0.54, 11.93] 0.32 -

H-G1 - Java experience Security score Kruskal-Wallis - - 0.249 0.498
H-G2 - Stored passwords before Secure FET 2.54 [0.49, 17.72] 0.297 0.498
H-G3 - Copy/Paste Security score Mann-Whitney - - 0.000" 0.000"

IV: Independent variable, DV: Dependent variable, O.R.: Odds ratio, C.I.: Confidence interval
Corrected with Bonferroni-Holm correction, except for H-F2.
Significant tests are marked with *.

Table 2: Summary of main hypotheses.

even stated that all requirements were functionally solved and thus
their solution was optimal (JN10, SN7, SN1, SN2, and SN5). SN1,
for instance, noted: “My [manually performed] tests [...] worked as
expected, I should have covered everything.” His answer shows that
he invested some time in testing his implementation. Still, since SN1
did not think about storing the user credentials securely, it might be
interesting to involve security in the testing process as well. The
primed participant SP1, though, argued that his solution was optimal
because the security part was sufficiently solved: “It uses bcrypt
[with the] highest vote on [Stack Overflow link].” In contrast, a
number of participants said that the quality of their code was not
optimal because it did not rely on best practices, e.g., SP11: “T have
probably not used best practices for Spring/Hibernate as it is the
first time I used them.” Other participants mentioned that exceptions
and warnings need to be caught and the code can be written more
cleanly and clearly (SP4, SP9, SP10, SN4, and SN9).

If participants believed they stored the user password securely, they
were asked whether they solved the task in an optimal way with
regard to security (see Appendix[C] Q9). Only 7 of 40 participants
believed that their security code was optimal (JNS, JN7, JP4, JP7,
JP10, SP7, and SP11). SP7, for instance, noted that he used an
“industry standard way of storing passwords” and assumed that
his solution was therefore optimal. While JP3 and SP1 indicated
they solved the task in an optimal way at first, they changed their
minds when the question was asked in terms of security. While JP3
noted “everything is implemented”, thus indicating his solution was
optimal, he changed his mind with regard to security, “because the
[iteration count] is not implemented yet.” SP1 listed three reasons
explaining why his solution is not optimal in terms of security:
(1) “User is not enforced to use symbol, combination of numbers,
etc.,” (2) “Storing the password securely does not mean that one
[person] cannot hack into another’s account,” and (3) “Lacking [...]
2 step validation (by phone, for example).” First, SP1 assumed
that security should be implemented involving the end-user. This
assumption was also made by other participants, who noticed that
password validation for the end-user was missing in their solutions
(SN1, SN2, SN4, SP5, JP7, SP9, and SP11). Second, SP1 did not
trust password security at all, although he suggested a method for
improvement (two-factor authentication). Interestingly, the non-
primed participants, JN5 and JN7, indicated they stored the user
password securely in an optimal way. However, we did not find
any evidence of security at all, in either their solutions or in their
attempts. Their answers suggested a general lack of knowledge of
password storage security.

8. METHODOLOGICAL CONTRIBUTIONS
8.1 Deception

While Fahl et al. [20] found no significant difference in password
studies in the behavior of end-users who were primed that the study

was about passwords or received deceptive treatment, we see a very
strong effect on the behavior of developers. Both design choices
offer interesting insights into the problem of storing passwords
securely.

If researchers wish to study the usability of a security API, priming
participants is clearly the best choice, since the majority of partici-
pants in the non-primed group had no contact with the API at all and
thus do not produce any data to analyze. The majority of developer
user studies fall into this category.

However, these studies only look at one aspect of a much larger
problem. In [21] Fahl et al. analyzed the misuse of transport layer
security (TLS) APIs in Android. They found that 17% of applica-
tions using HTTPS contained dangerous code. However, 53.8% of
apps did not use the TLS API at all, exposing a wealth of data to the
Internet without any protection. We think it is important to study
this aspect as well, and help developers become aware they need to
think about security. Our results suggest that deception in studies is
a promising way of studying this. It can be argued that the students
simply did not include secure storage because they were in a study
environment. Some participants even stated this in the exit survey
and interviews. However, since there are many cases in the real
world in which security is not explicitly stipulated, we think that the
non-priming condition can be a valuable design for studies. This
is definitively an area in which more research is needed before a
reliable statement can be made.

For now, we do suggest that the usable security community also
conducts developer studies using deception instead of focusing only
on API use on its own. It is, however, important to conduct a full
debriefing at the end to ensure the well-being of participants. In our
case, we did not see any issues with the debriefing that were not
addressed to the satisfaction of the participants.

8.2 Task length

The most difficult aspect of designing a deception study for devel-
opers is that distraction tasks are necessary to avoid tipping off the
participants.

Short tasks Most related studies are very short [9} |10} |11} |48]].
As noticed by Acar et al. [11]], tasks for uncompensated developers
should be designed in a way that “participants would be likely to
complete them before losing interest, but still complex enough to be
interesting and allow for some mistakes.” Acar et al. [11]] conducted
an online experiment with 307 uncompensated GitHub users, who
were asked to complete three different tasks: (1) URL shortener, (2)
credential storage, and (3) string encryption. Each participant was
assigned the tasks in random order. For the user credential storage
task, only one function was given, which had to be completed by
developers. The task was formulated in a straight forward way and

306 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

it was clear where to insert the needed code and why. Additionally,
clear instructions were given to the participants, answering the
question when the problem was solved. The participants were not
explicitly asked to consider security. In their study, only a small
number, 17.4%, stored the user passwords in plain text. A direct
comparison cannot be made since the GitHub users were more
experienced than the students in our study; however, the short task
time and the direct instruction to store the passwords is likely to
have an effect as well.

One-day time frame In contrast to tasks completed over a short
time frame, longer studies are more realistic since developers have
long-lasting projects and tasks they work on in the real world. In
particular, it is possible to create competing requirements, pitting
functionality against security in a way that is not possible in short,
focused tasks. In [42]], we discussed the design process of the task
used in this paper in detail and how the 8 h time frame was calibrated
with several pilot studies. The rational was that 8 hours is the longest
time we could reasonably ask participants to remain in a lab setting.
In addition, there are a number of benefits to having the participants
in a controlled environment. In particular, we could fully configure
the lab computers to gather a wealth of information, including full-
screen capture, history of all code, copy/paste events, search history,
and websites visited. Remote studies could easily use web-based
editors to capture code and copy/paste events; however, gathering
the rest of the information would be much more intrusive.

Multi-day time frame In a one-day time frame, we were able
to conduct a task that was sufficiently long and complex that par-
ticipants could perceive security as a secondary task. A multi-day
time frame also offers this benefit. For instance, Bau et al. [[13]]
investigated web application vulnerability in a multi-day experiment
with eight freelancers. They were asked to develop an identity site
for youth sports photo-sharing with login and different permission
levels for coaches, parents, and administrators. The freelancers were
primed for security by mentioning that the website “was mandated
by ‘legal regulations’ to be ‘secure’, due to hosting photos of mi-
nors as well as storing sensitive contact information” [[13|]. The
developers promised a delivery period of 35 days. Participants were
compensated from three different price ranges (< $1000, $1000
- $2500, and > $2500). Two of the eight freelancers stored pass-
words in plain text, showing a similar distribution as in our priming
condition. This design offers higher ecological validity; however,
far less detailed information about the code creation process can
be gathered. Both our study and the studies conducted by Acar et
al. [10] have shown that information sources play a vital role in code
security, which is much trickier to gather in this kind of study. So
there is a trade-off between ecological validity and the ability to
gather high-fidelity data.

In short, we see benefits in all three time frames and researchers
now have initial data to help choose which is most appropriate for
their setting.

8.3 Laboratory setting

Many developer studies are conducted online due to the difficulty of
recruiting enough participants to come to a lab study. However, we
found the information gathered by our instrument OS very valuable.
Most developer studies contain both coding tasks and questionnaires.
The questionnaires are used both for pre-screening and for gathering
information on the task. While it is possible to detect the use of
web sources indirectly through paste events, it is also critical to be
able to detect the use of online sources during the administration of
surveys.

We manually analyzed all the screen capture videos of our par-
ticipants while they were answering the surveys. We could only
analyze the videos of 38 participants due to technical difficulties,

which meant that we were missing two videos (JN§ and SNS)E]

We found that half the participants (20/38) used Google when an-
swering the survey, either searching for framework-related topics
(6/38) or for password storage-related topics (14/38; see Table E])
Interestingly, half the non-primed participants who did not attempt
to store user passwords securely (4/8) started to search how this
could be done while answering the survey. SN1, for instance, copied
a survey answer from Wikipedia, explaining what hashing functions

are defending against.

Of the primed participants with secure solutions, 58% (7/12) searched
for additional password storage security details, e.g., in order to ex-

plain why the used algorithms were optimal or not.

Since our laboratory setting captured this information, we could
take it into account during data analysis. In most online settings,
this information is not available and thus there can be no certainty
that the answers reflect the knowledge of the participant or just their

ability to use Google.

This is particularly critical in the use of pre-screening surveys, as
is done in most studies (including this one). It is common to try
to screen out unsuitable candidates who do not have the technical
skills needed to take part. Luckily, we only used self-assessment
and reported experience to conduct the counter-balancing. However,
there are also expert studies which used content-based questions for
participant selection, such as the study by Krombholz et al. [38]].
Here, the researchers had to be aware that a potentially large number
of the participants used Google to answer the questions, which might

not properly reflect their actual skills.

Being able to see all searches and information sources in direct rela-
tion to questions and answers was very valuable and is an important
strength of lab-based studies. We will be releasing the study OS as
an open source project, so other studies can easily capture the same

information.

8.4 Qualitative vs. Quantitative study design
Finally, we want to share some observations contrasting the qualita-
tive approach from [42]] with our quantitative extension. Here, we
need to distinguish between the primary study and the meta-study.

Concerning the meta-variable priming, the qualitative study already
delivered a good indication that there was a significant effect, with
0 of 10 non-primed participants and 7 out of 10 primed participants
achieving a secure solution. However, since small samples tend to
produce more extreme results, we would not have recommended
basing study design decisions on these results. With a sample size
of 40 participants in the present study, we are confident this is
not a fluke and that the use of deception changes the behavior of
participants dramatically. It would be useful to conduct even larger
studies since we currently can only expect to find large effects.
However, with regard to study design, we would very much want to

catch medium or even small effects as well.

For the primary study, extending the sample size allowed us to
conduct an A/B test to compare two frameworks. While H-F1 was
not significant in this study due to the addition of the meta-variables
and consequent correction for multiple tests, even the relatively
small sample size in a normal developer study would be sufficient

'We later discovered there was a keyboard shortcut that participants

seemed to have used by accident which stopped the recording.

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 307

Search Security search

Group
Non-Secure (6)
Primed ABF (2)
Secure (12)

Non-Secure (16)

Non-Primed ABF (2)

—J| C0O— W
—_ A 9=

Table 3: # of participants who searched on the Internet in order to fill out the survey.

to get good results. That being said, the qualitative study already
highlighted many of the problems faced by developers, and the
interviews were very valuable in gaining deeper insights. We did
not find much to add to the conclusions of the primary study of [42]
other than having stronger evidence that library support as offered
by Spring has tangible benefits.

A particularly salient benefit to qualitative developer studies is that
fewer participants are needed. As such, unless rigorous evidence in
the context of an A/B test is needed, we think that usable security
research into developers is at a stage where qualitative studies have
a lot to offer and encourage the community to be more accepting of
them.

9. TAKE-AWAYS

Below, we summarize the main take-aways from our study.

e Task design has a huge effect on participant behavior and de-
ception studies seem to be a promising method for examining
a previously overlooked component of developer behavior
when using student participants. That said, we must reiterate
important limitations to this finding. We cannot make any
claims concerning studies with professionals. It seems likely
that even within a group comprising professionals, there will
be multiple sub-groups that will react differently under prim-
ing. This will need to be examined in future work. It is also
possible that a large portion of this effect is a study artifact. In
any case, we recommend more experimentation concerning
the design of developer studies. Currently, researchers base
task and study design mostly on gut feelings. Since we have
shown that one gets vastly different outcomes, we believe
it is worth investing the effort into testing multiple designs
in pilot studies instead of just going with one design as is
currently often the case. We also believe more effort needs
to be invested in understanding what motivates developers to
implement security instead of focusing too narrowly on the
easier measure of API usability.

e The use of Google by participants during surveys is problem-
atic and researchers should not rely on answers reflecting the
internal knowledge of the participants. This is particularly rel-
evant for pre-screening surveys and we strongly recommend
avoiding use of answers that can be googled for participant
selection or condition assignment. If at all possible, we recom-
mend that search behavior and web usage should be tracked,
because a) thus, researchers can distinguish between internal
knowledge and the ability to search for knowledge; and b)
seeing when and what participants google is very enlightening
in itself and a valuable research instrument.

e Itis our belief that qualitative research into developer behavior
offers a good cost/benefit trade-oft and that many valuable
insights can be gained without the need for large(r) sample
sizes. In addition, the use of interviews as opposed to surveys

avoids the googling problem. We hope that our comparison
of quantitative and qualitative examination of the same topic
encourages more qualitative studies and lowers the barriers
to entering into this field, since recruitment of participants is
one of the biggest challenges.

e While Acar et al. have found that programming language
experience has a significant effect on the security of code pro-
duced in developer studies [11]], we did not find a significant
effect for this. In contrast to their study, our student sample
had a much smaller range of programming skills; this could
explain the lack of a measurable effect. This suggests that it
might not be necessary to balance programming experience
when working with students, thus simplifying random condi-
tion assignment. However, our power on this test was low so
this result should be replicated before it is used confidently.

e We found copy/paste has a significant positive effect on the
security of our participants’ code. The way previous work
was set up meant that they mainly found negative effects, thus
potentially skewing the perception. We think highlighting the
positive side of copy/paste behavior is important.

10. CONCLUSION

In this paper, we presented an extension of our qualitative developer
study on password storage [42]. The extension had the dual goal of
generating insights into the effect of design for developer studies,
as well as furthering the understanding of why developers struggle
to store passwords securely. We examined seven main hypotheses
concerning both the primary study and the meta-study. We also
compared our quantitative extension to the qualitative results of [42].
Our results suggest that priming or not priming participants allows
us to study different aspects of student developer behavior. Priming
can be used to discover usability problems of security APIs and
test improvements with a straightforward study setup. Non-priming
(i.e., deception), though, might be used to research why develop-
ers do not add security without study countermeasures or being
prompted. However, more work is needed to validate the ecological
validity of deception in this context. We also found many partici-
pants use Google to answer survey questions. This is potentially
very damaging to studies that do not account for this effect and one
of many reasons we see for using qualitative research methods such
as interviews to study developers.

The next step in this research endeavor is designing an experiment
to study the priming effect with professionals. Since it is unrealistic
to expect even a small number of working professionals to sacrifice
a full day to take part in a lab study, a different study design will
be needed. We also plan to study additional design variables for
developer studies to create a stronger foundation for conducting
usable security and privacy research with professionals.

11. ACKNOWLEDGMENTS
This work was partially funded by the ERC Grant 678341: Frontiers
of Usable Security.

308 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

12.
(1]

(2]
(3]
(4]

[5

—

[6

[

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(171

(18]

[19]

[20]

REFERENCES
Githut: A small place to discover languages in github.
http://githut.info/, February 6, 2018 visited.
Glipper is a clipboardmanager for gnome.
https://launchpad.net/glipper, February 6, 2018 visited.
Pypl popularity of programming language.
http://pypl.github.io/PYPL html, February 6, 2018 visited.
The redmonk programming language rankings.
http://redmonk.com/sogrady/2017/06/08/language-
rankings-6-17/, February 6, 2018 visited.
Tiobe index. http: //www.tiobe.com/tiobe-index/, February
6, 2018 visited.
Trendy skills: Extracting skills that employers seek in the it
industry. http://trendyskills.com/, February 6, 2018
visited.
W3techs web technology surveys: 'usage of server-side
programming languages for websites’. https://w3techs.com/
technologies/overview/programming_language/all,
February 6, 2018 visited.
R. Abu-Salma, M. A. Sasse, J. Bonneau, A. Danilova,
A. Naiakshina, and M. Smith. Obstacles to the adoption of
secure communication tools. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 137-153. IEEE, 2017.
Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky. Comparing the usability of
cryptographic apis. In Proceedings of the 38th IEEE
Symposium on Security and Privacy, 2017.
Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky. You get where you’re looking for: The impact of
information sources on code security. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 289-305. IEEE, 2016.

Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl.

Security developer studies with github users: Exploring a
convenience sample. In Symposium on Usable Privacy and
Security (SOUPS), 2017.

R. A. Armstrong. When to use the Bonferroni correction.
34:502-508, 2014.

J. Bau, F. Wang, E. Bursztein, P. Mutchler, and J. C. Mitchell.

Vulnerability factors in new web applications: Audit tools,
developer selection & languages. Stanford, Tech. Rep, 2012.
P. Berander. Using students as subjects in requirements
prioritization. In Empirical Software Engineering, 2004.
ISESE’04. Proceedings. 2004 International Symposium on,
pages 167-176. IEEE, 2004.

J. Bonneau and S. Preibusch. The password thicket: Technical
and market failures in human authentication on the web. In
WEIS, 2010.

J. Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4-7, 1996.

S. Clarke. Using the cognitive dimensions framework to
design usable apis.

J. Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37-46,
1960.

M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An
empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages
73-84. ACM, 2013.

S. Fahl, M. Harbach, Y. Acar, and M. Smith. On the

ecological validity of a password study. In Proceedings of the
Ninth Symposium on Usable Privacy and Security, page 13.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]
[36]
(371
(38]

[39]

ACM, 2013.

S. Fahl, M. Harbach, T. Muders, L. Baumgirtner,

B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In
Proceedings of the 2012 ACM conference on Computer and
communications security, pages 50-61. ACM, 2012.

S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith.
Hey, you, get off of my clipboard. In International Conference
on Financial Cryptography and Data Security, pages
144-161. Springer, 2013.

S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith.
Rethinking ssl development in an appified world. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 49-60. ACM,
2013.

M. Finifter and D. Wagner. Exploring the relationship
between web application development tools and security. In
USENIX conference on Web application development, 2011.
K. Finstad. Response interpolation and scale sensitivity:
Evidence against 5-point scales. Journal of Usability Studies,
5(3):104-110, 2010.

F. Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar,

M. Backes, and S. Fahl. Stack overflow considered harmful?
The Impact of Copy & Paste on Android Application Security.
CoRR abs/1710.03135, 2017.

J. L. Fleiss, B. Levin, and M. C. Paik. Statistical methods for
rates and proportions. John Wiley & Sons, 2013.

A. Forget, S. Chiasson, P. C. Van Oorschot, and R. Biddle.
Improving Text Passwords Through Persuasion. In
Proceedings of the 4th Symposium on Usable Privacy and
Security, pages 1-12. ACM, jul 2008.

P. Gorski and L. L. Iacono. Towards the usability evaluation of
security apis. In Proceedings of the Tenth International
Symposium on Human Aspects of Information Security &
Assurance (HAISA 2016), page 252. Lulu. com, 2016.

P. A. Grassi, E. M. Newton, R. A. Perlner, A. R. Regenscheid,
W. E. Burr, J. P. Richer, N. B. Lefkovitz, J. M. Danker, Y.-Y.
Choong, K. Greene, et al. Digital identity guidelines:
Authentication and lifecycle management. Special Publication
(NIST SP)-800-63B, 2017.

M. Green and M. Smith. Developers are not the enemy!: The
need for usable security apis. IEEE Security & Privacy,
14(5):40-46, 2016.

S. M. T. Haque, M. Wright, and S. Scielzo. A Study of User
Password Strategy for Multiple Accounts. pages 1-3.

M. Host, B. Regnell, and C. Wohlin. Using students as
subjects - a comparative study of students and professionals in
lead-time impact assessment. Empirical Software
Engineering, 5(3):201-214, 2000.

L. Ion, R. Reeder, and S. Consolvo. "... no one can hack my
mind": Comparing expert and non-expert security practices.
In SOUPS, volume 15, pages 1-20, 2015.

B. Kaliski. Pkcs# 5: Password-based cryptography
specification version 2.0, Sept. 2000.

A. J. Kimmel. Ethical issues in behavioral research: Basic
and applied perspectives. John Wiley & Sons, 2009.

R. E. Kirk. Experimental design. Wiley Online Library, 1982.
K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl.
"I Have No Idea What I'm Doing" 4AS On the Usability of
Deploying HTTPS. USENIX Security, pages 1-18, jun 2017.
T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 309

http://githut.info/
https://launchpad.net/glipper
http://pypl.github.io/PYPL.html
http://redmonk.com/sogrady/2017/06/08/language-rankings-6-17/
http://redmonk.com/sogrady/2017/06/08/language-rankings-6-17/
http://www.tiobe.com/tiobe-index/
http://trendyskills.com/
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all

models: a study of developer work habits. In Proceedings of
the 28th international conference on Software engineering,
pages 492-501. ACM, 2006.

[40] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why does
cryptographic software fail?: a case study and open problems.
In Proceedings of 5th Asia-Pacific Workshop on Systems,
page 7. ACM, 2014.

[41] S. Nadi, S. Kriiger, M. Mezini, and E. Bodden. Jumping
through hoops: why do java developers struggle with
cryptography apis? In Proceedings of the 38th International
Conference on Software Engineering, pages 935-946. ACM,
2016.

[42] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog,

S. Dechand, and M. Smith. Why do developers get password
storage wrong?: A qualitative usability study. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 311-328. ACM, 2017.

[43] J. Nielsen. Usability engineering. Elsevier, 1994.

[44] L. Prechelt. Plat_forms: A web development platform
comparison by an exploratory experiment searching for
emergent platform properties. IEEE Transactions on Software
Engineering, 37(1):95-108, 2011.

[45] N. Provos and D. Mazieres. A future-adaptable password
scheme. In USENIX Annual Technical Conference, FREENIX
Track, pages 81-91, 1999.

[46] I. Salman, A. T. Misirli, and N. Juristo. Are students
representatives of professionals in software engineering
experiments? In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pages
666-676. IEEE Press, 2015.

[47] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
emperor’s new security indicators. In Security and Privacy,
2007. SP’07. IEEE Symposium on, pages 51-65. IEEE, 2007.

[48] J. Stylos and B. A. Myers. The implications of method
placement on api learnability. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
software engineering, pages 105-112. ACM, 2008.

[49] M. Svahnberg, A. Aurum, and C. Wohlin. Using students as
subjects - an empirical evaluation. ACM, New York, New
York, USA, Oct. 2008.

[50] R. Wash and E. Rader. Influencing mental models of security:
aresearch agenda. In Proceedings of the 2011 New Security
Paradigms Workshop, pages 57-66. ACM, 2011.

[51] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith.
Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In Security and
Privacy (SP), 2016 IEEE Symposium on, pages 158—177.
IEEE, 2016.

APPENDIX
We used a seven-point rating scale according to [25]].

A. PRE-SCREENING QUESTIONNAIRE
1. Gender: Female/Male/Other/Prefer not to say

2. Which university are you at? University of Bonn/Other: [free
text]

3. In which program are you currently enrolled? Bachelor Com-
puter Science/Master Computer Science/Other: [free text]

4. Your semester: [free text]

5. How familiar are you with Java?
1 - Not familiar at all - 7 - Very familiar

6. How familiar are you with PostgreSQL?
1 - Not familiar at all - 7 - Very familiar

7. How familiar are you with Hibernate?
1 - Not familiar at all - 7 - Very familiar

8. How familiar are you with Eclipse IDE?
1 -Not familiar at all - 7 - Very familiar

B. ENTRY SURVEY

Before solving the task, participants were asked questions Q5 - Q8
from the pre-screening questionnaire (Appendix [A)) one more time
for consistency reasons. Additionally, they were asked two further
questions:

1. Expectation:
What is your expectation? Overall, this task is
1 - Very difficult - 7 - Very easy

2. How familiar are you with JavaServer Faces (JSF)/Spring?
I - Not familiar at all - 7 - Very familiar

C. EXIT SURVEY

Questions asked after solving the task:

1. Experience
Overall, this task was
1 - Very difficult - 7 - Very easy

2. Do you think your solution is optimal? No / Yes

e Why do you think your solution is (not) optimal? [free
text]

3. T'have a good understanding of security concepts.
1 - Strongly disagree - 7- Strongly agree

4. How often do you ask for help facing security problems?
1- Never - 7 - Every time

5. How often are you asked for help when somebody is facing
security problems?
1- Never - 7 - Every time

6. How often do you need to add security to the software you
develop in general (Primed group: apart from this study)?
1- Never - 7 - Every time

7. How often have you stored passwords in the software you have
developed (Primed group: apart from this study)?

8. How would you rate your background/knowledge with regard
to secure password storage in a database?
1- Not knowledgeable at all - 7 Very knowledgeable

9. Do you think that you stored the end-user passwords securely?
No / Yes
o If Yes:

— What did you do to store the passwords securely?
[free text]

— Do you think your solution is optimal? No / Yes
* Why do you think your solution is (not) optimal?

[free text]

— Primed group: Do you think you would have stored
end-user passwords securely, if you had not been told
about it? Please explain your decision. [free text]

e If No:

— Why do you think that you did not store the passwords

securely? [free text]

310 Fourteenth Symposium on Usable Privacy and Security

USENIX Association

— Non-Primed group: Were you aware that the task
needed a secure solution? No / Yes

— What would you do, if you needed to store the end-
user passwords securely? [free text]
10. Did you use libraries to store the end-user passwords securely?
No / Yes
o If Yes:

— Which libraries did you use to store the end-user
passwords securely (in this study)? [free text]
— Please name the most relevant library you have used

to store the end-user passwords securely (in this study).

[free text]

— You have identified {participant’s answer} as the
most relevant library to store end-user passwords se-
curely. How would you rate its ease of use in terms
of accomplishing your tasks functionally / securely?
1- Very Difficult - 7- Very Easy
Please explain your decision. [free text]

— Usability scale for {participant’s answer} (see [C.I)

11. JSF/ Spring supported me in storing the end-user password
securely. 1 - Strongly disagree - 7- Strongly agree
Please explain your decision. [free text]

12. JSF/ Spring prevented me in storing the end-user password
securely. 1 - Strongly disagree - 7- Strongly agree
Please explain your decision. [free text]

13. JSF/ Spring: Usability scale (see [C.1)); the term library was
replaced by framework.

14. Have you used Java APIs/ libraries to store end-user passwords
securely before? No / Yes
o If Yes:

— Which Java APIs / libraries to store end-user pass-
words securely have you used before? [free text]

— What is your most-used API / library for secure pass-
word storage? [free text]

— How would you rate its ease of use in terms of accom-
plishing your tasks functionally? /- Very Difficult - 7-
Very Easy
Please explain your decision. [free text]

— How would you rate its ease of use in terms of ac-
complishing your tasks securely? /- Very Difficult -
7- Very Easy
Please explain your decision. [free text]

C.1 Usability scale from [9]
By contrast to [9]] we dropped the option "does not apply" for the
last two questions, Q10 and Q11. Used scale in our study:

Please rate your agreement to the following questions on a scale
from ’strongly agree’ to ’strongly disagree.” (Strongly agree; agree;
neutral; disagree; strongly disagree). Calculate the 0-100 score
as follows: 2.5 * (5-Q + Y. .10 (Q;-1)); for the score, Q11 is
omitted.

o [had to understand how most of the assigned library works in
order to complete the tasks.

e It would be easy and require only small changes to change
parameters or configuration later without breaking my code.

e After doing these tasks, I think I have a good understanding of
the assigned library overall.

e [only had to read a little of the documentation for the assigned
library to understand the concepts that I needed for these task.

e The names of classes and methods in the assigned library
corresponded well to the functions they provided.

o [t was straightforward and easy to implement the given tasks
using the assigned library.

e When I accessed the assigned library documentation, it was
easy to find useful help.

e In the documentation, I found helpful explanations.

e In the documentation, I found helpful code examples.

Please rate your agreement to the following questions on a scale
from ’strongly agree’ to ’strongly disagree’. (Strongly agree; agree;
neutral; disagree; strongly disagree).

e When I made a mistake, I got a meaningful error message/exception.

e Using the information from the error message/ exception, it
was easy to fix my mistake.

C.2 Demographics
e Please select your gender. Female/Male/Other/Prefer not to
say
o Age: [free text]

e What is your current occupation? Student Undergraduate/Student
Graduate/Other: [free text]

e At which university are you currently enrolled? University of
Bonn / University of Aachen

e Which security lectures did you pass in your Bachelor/Master
programme? (7o select)/Other: [free text]

e Currently, do you have a part-time job in the field of Computer
Science? If yes, please specify: [free text]

e How many years of experience do you have with Java devel-

opment? < [year/ 1 -2 years/3 -5 years/ 6 - 10 years/ 11+
year

e What is your nationality? [free text]

e Thank you for answering the questions! If you have any com-
ments or suggestions, please leave them here: [free text]

D. SECURITY SCORE

We used the following security score from Naiakshina et al. [42] for
the evaluation of participants’ solutions:

1. The end-user password is salted (+1) and hashed (+1).
2. The derived length of the hash is at least 160 bits long (+1).

3. The iteration count for key stretching is at least 1000 (+0.5)
or 10000 (+1) for PBKDF2 [35] and at least 210 — 1024 for
becrypt [45] (+1).

4. A memory-hard hashing function is used (+1).
5. The salt value is generated randomly (+1).
6. The salt is at least 32 bits in length (+1).

E. SECURITY RESULTS

Table[d] summarizes the security evaluation for participants’ imple-
mented solutions as introduced in [42] with slightly modifications,
e.g., the digest size of bcrypt was changed from 192 bits to 184
bits, reasonable by practical implementation standards. Table [d]also
considers participants who attempted to store end-user passwords
securely during programming, but removed the security code from
their final solutions (ABF = attempted but failed).

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 311

Time Functionality Security

Hashing Salt
Hashing function Digest size (bits) T[teration count Generation Length (bits) Total
(hh:mm) Storage working (at most +2) (+1 if > 160) (at most +1) (at most +2) (+1if > 32) 7

IN2* 04:05 v

IN3* 03:01 v

IN4* 04:11 X

IN5* 05:30 b

IN6 05:13 v

IN7 07:33 X

IN8 07:33 b

JN9 06:08 v SHA1 160 1 end-user email address 8 3 (ABF)
INI0O 03:45 v

INIL 06:36 b

JPI* 04:55 v

JP2% 03:12 v PBKDF2(SHA256) 512 1000 SecureRandom 256 55
JP3* 05:29 v SHA256 256 1 2
JP4x 04:12 v PBKDF2(SHA1) 160 20000 SecureRandom 64 6
JP5% 06:32 v

JP6 07:33 X

JP7 06:08 b BCrypt 184 212 SecureRandom 128 6
JP8 07:22 X

JP9 07:18 X BCryp 184 28 pgcrypto 128 5 (ABF)
JP10 04:45 v SHA256 256 1 2
SNI* 03:15 v
SN2 02:24 v
SN3* 02:01 v
SN4* 04:01 v BCrypt 184 2 SecureRandom 128 6 (ABF)
SN5* 04:50 v

SN6 07:03 b

SN7 05:35 v

SN8 0733 b

SN9 05:31 v
SNI10 03:23 v

SP1* 03:15 v BCrypt 184 210 SecureRandom 128 6
SP3* 07:00 X BCrypt 184 210 SecureRandom 128 6
SP4* 03:39 v BCrypt 184 210 SecureRandom 128 6
SP5% 03:44 X

SP6 07:33 v

SP7 01:49 v BCrypt 184 21 SecureRandom 128 6
SP8 05:59 X # 0 (ABF)
SP9 05:50 v BCrypt 184 210 SecureRandom 128 6
SP10 05:53 v BCrypt 184 210 SecureRandom 128 6
SPIl 03:15 v BCrypt 184 210 SecureRandom 128 6

Table 4: Password security evaluation, including participants who attempted to implement security but failed (ABF).
Labeling of participants: S = Spring, J = JSE, P = Priming, N = Non-Priming
* = Used for the qualitative study in [42].
= Used Spring Security’s PasswordEncoder interface without deciding for an algorithm.

F. COPY/PASTE WEBSITES failed). In order to search for programming security attempts we
Table [3 lists all websites used by participants who implemented used the Unix utility grep. The following search words were used for
user password storage security. We also examined websites used by security attempt identification: encode, sha, pbkdf2, scrypt, hashpw,
participants who attempted to store passwords securely, but removed salt, MD5, passwordencoder, iterations, pbekeyspec, argon2, berypt,
all security-relevant code from their solutions (ABF = attempted but messagedigest, crypt.

312 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Participant Security Website Description Most Obvious Most
score insecure example secure
example example
JN9 3 (ABF) www.shal-online.com/shal-java/ Blog Post: SHA1 2 2 2
Java
https: OWASP: General 6 6 6
. ss //www.owasp.org/index.php/Hashing_Java Hashing Example
https: Stack Overflow: 3 3 3
//stackoverflow.com/questions/18268502/ Salt Example
how-to-generate-salt-value-in-java
https://howtodoinjava.com/security/how- Blog Post: Hashing 1 1 7
to-generate-secure-password-hash-md5- Example
sha-pbkdf2-bcrypt-examples/
#PBKDF2WithHmacSHA1
JP3 2 www.mkyong.com/java/java-sha-hashing- Blog Post: Hashing 2 2 2
example/ Example
JP4 6 http://blog.jerryorr.com/2012/05/secure- Blog Post: 55 6 6
password- storage-lots-of-donts.html Hashing Example
http: Blog Post: Hashing 0 0 0
JP7 6 //javaandj2eetutor.blogspot.de/2014/01/ Example
jsf-login-and-register-application.html
www.mindrot.org/projects/jBCrypt/ Documentation: 6 6 6
Java
Implementation
jBCrypt
JP9 5.5 (ABF) https://www.meetspaceapp.com/2016/04/12/ Blog Post: Hashed 5.5 5.5 55
passwords-postgresql-pgcrypto.html Passwords with
PostgreSQL’s
pgcrypto
https: Stack Overflow: 3 3 5
//stackoverflow.com/questions/33085493/ Hashing Example
hash-a-password-with-sha-512-in-java
JP10 2
https://stackoverflow.com/questions/ Stack Overflow: 2 2 2
3103652/hash-string-via-sha-256-in-java Hashing Example
https://docs.oracle.com/javase/7/docs/ Documentation: 1 2 2
api/java/security/MessageDigest.html Class
MessageDigest
https://stackoverflow.com/questions/ Stack Overflow: 1 1 1
11665360/convert-md5-into-string-in-java, Convert MDS5 into
String in Java
SN4 6 (ABF) http://websystique.com/spring-security/ Blog Post: Hashing 6 6 6
spring-security-4-password-encoder- Example
bcrypt-example-with-hibernate/
SN8 0 https: Blog Post: Hashing 0 0 0
//dzone.com/articles/spring-mvc-example- Example
for-user-registration-and-login-1
SP1 6 https: Stack Overflow: 6 6 6
//stackoverflow.com/questions/25844419/ Hashing Example
spring-bcryptpasswordencoder-generate-
different-password- for-same-input
SP3, SP4, 6 www.mkyong.com/spring-security/spring- Blog Post: Hashing 6 6 6
SP11 security-password-hashing-example/ Example
SP7 6 https://hellokoding.com/registration-and- Blog Post: Hashing 6 6 6
login-example-with-spring-xml- Example
configuration-maven- jsp-and-mysql/
SP8 0 (ABF) www.websystique.com/springmvc/spring-mvc-| Blog Post: Hashing 6 6 6
4-and-spring-security-4-integration- Example
example/
SP9 6 https://stackoverflow.com/questions/ Stack Overflow: 55 6 6
18653294 /how- to-correctly-encode- Hashing Example
password-using-shapasswordencoder
SP10 6 https: Stack Overflow: 6 6 6
//stackoverflow.com/questions/42431208/ Password
password-encryption-in-spring-mvc Encryption in
Spring MVC

Table 5: Websites from which participants copied and pasted code for password storage.

USENIX Association

Fourteenth Symposium on Usable Privacy and Security 313

www.sha1-online.com/sha1-java/
https://www.owasp.org/index.php/Hashing_Java
https://www.owasp.org/index.php/Hashing_Java
https://stackoverflow.com/questions/18268502/how-to-generate-salt-value-in-java
https://stackoverflow.com/questions/18268502/how-to-generate-salt-value-in-java
https://stackoverflow.com/questions/18268502/how-to-generate-salt-value-in-java
https://howtodoinjava.com/security/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/#PBKDF2WithHmacSHA1
https://howtodoinjava.com/security/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/#PBKDF2WithHmacSHA1
https://howtodoinjava.com/security/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/#PBKDF2WithHmacSHA1
https://howtodoinjava.com/security/how-to-generate-secure-password-hash-md5-sha-pbkdf2-bcrypt-examples/#PBKDF2WithHmacSHA1
www.mkyong.com/java/java-sha-hashing-example/
www.mkyong.com/java/java-sha-hashing-example/
http://blog.jerryorr.com/2012/05/secure-password-storage-lots-of-donts.html
http://blog.jerryorr.com/2012/05/secure-password-storage-lots-of-donts.html
http://javaandj2eetutor.blogspot.de/2014/01/jsf-login-and-register-application.html
http://javaandj2eetutor.blogspot.de/2014/01/jsf-login-and-register-application.html
http://javaandj2eetutor.blogspot.de/2014/01/jsf-login-and-register-application.html
www.mindrot.org/projects/jBCrypt/
https://www.meetspaceapp.com/2016/04/12/passwords-postgresql-pgcrypto.html
https://www.meetspaceapp.com/2016/04/12/passwords-postgresql-pgcrypto.html
https://stackoverflow.com/questions/33085493/hash-a-password-with-sha-512-in-java
https://stackoverflow.com/questions/33085493/hash-a-password-with-sha-512-in-java
https://stackoverflow.com/questions/33085493/hash-a-password-with-sha-512-in-java
https://stackoverflow.com/questions/3103652/hash-string-via-sha-256-in-java
https://stackoverflow.com/questions/3103652/hash-string-via-sha-256-in-java
https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html
https://stackoverflow.com/questions/11665360/convert-md5-into-string-in-java
https://stackoverflow.com/questions/11665360/convert-md5-into-string-in-java
http://websystique.com/spring-security/spring-security-4-password-encoder-bcrypt-example-with-hibernate/
http://websystique.com/spring-security/spring-security-4-password-encoder-bcrypt-example-with-hibernate/
http://websystique.com/spring-security/spring-security-4-password-encoder-bcrypt-example-with-hibernate/
https://dzone.com/articles/spring-mvc-example-for-user-registration-and-login-1
https://dzone.com/articles/spring-mvc-example-for-user-registration-and-login-1
https://dzone.com/articles/spring-mvc-example-for-user-registration-and-login-1
https://stackoverflow.com/questions/25844419/spring-bcryptpasswordencoder-generate-different-password-for-same-input
https://stackoverflow.com/questions/25844419/spring-bcryptpasswordencoder-generate-different-password-for-same-input
https://stackoverflow.com/questions/25844419/spring-bcryptpasswordencoder-generate-different-password-for-same-input
https://stackoverflow.com/questions/25844419/spring-bcryptpasswordencoder-generate-different-password-for-same-input
www.mkyong.com/spring-security/spring-security-password-hashing-example/
www.mkyong.com/spring-security/spring-security-password-hashing-example/
https://hellokoding.com/registration-and-login-example-with-spring-xml-configuration-maven-jsp-and-mysql/
https://hellokoding.com/registration-and-login-example-with-spring-xml-configuration-maven-jsp-and-mysql/
https://hellokoding.com/registration-and-login-example-with-spring-xml-configuration-maven-jsp-and-mysql/
www.websystique.com/springmvc/spring-mvc-4-and-spring-security-4-integration-example/
www.websystique.com/springmvc/spring-mvc-4-and-spring-security-4-integration-example/
www.websystique.com/springmvc/spring-mvc-4-and-spring-security-4-integration-example/
https://stackoverflow.com/questions/18653294/how-to-correctly-encode-password-using-shapasswordencoder
https://stackoverflow.com/questions/18653294/how-to-correctly-encode-password-using-shapasswordencoder
https://stackoverflow.com/questions/18653294/how-to-correctly-encode-password-using-shapasswordencoder
https://stackoverflow.com/questions/42431208/password-encryption-in-spring-mvc
https://stackoverflow.com/questions/42431208/password-encryption-in-spring-mvc
https://stackoverflow.com/questions/42431208/password-encryption-in-spring-mvc

